Rao Reshma R, Bucci Alberto, Corby Sacha, Moss Benjamin, Liang Caiwu, Gopakumar Aswin, Stephens Ifan E L, Lloret-Fillol Julio, Durrant James R
Department of Materials, Royal School of Mines, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
Grantham Institute-Centre for Climate Change and the Environment, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
ACS Catal. 2024 Jul 17;14(15):11389-11399. doi: 10.1021/acscatal.4c02329. eCollection 2024 Aug 2.
Nickel-based oxides and oxyhydroxide catalysts exhibit state-of-the-art activity for the sluggish oxygen evolution reaction (OER) under alkaline conditions. A widely employed strategy to increase the gravimetric activity of the catalyst is to increase the active surface area via nanostructuring or decrease the particle size. However, the fundamental understanding about how tuning these parameters influences the density of oxidized species and their reaction kinetics remains unclear. Here, we use solution combustion synthesis, a low-cost and scalable approach, to synthesize a series of FeNiO samples from different precursor salts. Based on the precursor salt, the nanoparticle size can be changed significantly from ∼2.5 to ∼37 nm. The OER activity at pH 13 trends inversely with the particle size. Using operando time-resolved optical spectroscopy, we quantify the density of oxidized species as a function of potential and demonstrate that the OER kinetics exhibits a second-order dependence on the density of these species, suggesting that the OER mechanism relies on O-O coupling between neighboring oxidized species. With the decreasing particle size, the density of species accumulated is found to increase, and their intrinsic reactivity for the OER is found to decrease, attributed to the stronger binding of *O species (i.e., a cathodic shift of species energetics). This signifies that the high apparent OER activity per geometric area of the smaller nanoparticles is driven by their ability to accumulate a larger density of oxidized species. This study not only experimentally disentangles the influence of the density of oxidized species and intrinsic kinetics on the overall rate of the OER but also highlights the importance of tuning these parameters independently to develop more active OER catalysts.
镍基氧化物和羟基氧化物催化剂在碱性条件下对缓慢的析氧反应(OER)表现出最先进的活性。一种广泛采用的提高催化剂重量活性的策略是通过纳米结构化增加活性表面积或减小颗粒尺寸。然而,关于调节这些参数如何影响氧化物种的密度及其反应动力学的基本理解仍不清楚。在这里,我们使用溶液燃烧合成法(一种低成本且可扩展的方法)从不同的前体盐中合成了一系列FeNiO样品。基于前体盐,纳米颗粒尺寸可以从约2.5纳米显著变化到约37纳米。在pH值为13时的OER活性与颗粒尺寸呈反比。使用原位时间分辨光谱,我们量化了氧化物种的密度作为电位的函数,并证明OER动力学对这些物种的密度表现出二级依赖性,这表明OER机制依赖于相邻氧化物种之间的O - O耦合。随着颗粒尺寸的减小,发现积累的物种密度增加,并且它们对OER的固有反应性降低,这归因于*O物种的更强结合(即物种能量学的阴极偏移)。这表明较小纳米颗粒每几何面积的高表观OER活性是由它们积累更大密度氧化物种的能力驱动的。这项研究不仅通过实验解开了氧化物种密度和本征动力学对OER总速率的影响,还强调了独立调节这些参数以开发更具活性的OER催化剂的重要性。