Suppr超能文献

局部阻断 CD47 可增强小鼠黑色素瘤的免疫治疗效果。

Localized CD47 blockade enhances immunotherapy for murine melanoma.

机构信息

Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142.

Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10184-10189. doi: 10.1073/pnas.1710776114. Epub 2017 Sep 5.

Abstract

CD47 is an antiphagocytic ligand broadly expressed on normal and malignant tissues that delivers an inhibitory signal through the receptor signal regulatory protein alpha (SIRPα). Inhibitors of the CD47-SIRPα interaction improve antitumor antibody responses by enhancing antibody-dependent cellular phagocytosis (ADCP) in xenograft models. Endogenous expression of CD47 on a variety of cell types, including erythrocytes, creates a formidable antigen sink that may limit the efficacy of CD47-targeting therapies. We generated a nanobody, A4, that blocks the CD47-SIRPα interaction. A4 synergizes with anti-PD-L1, but not anti-CTLA4, therapy in the syngeneic B16F10 melanoma model. Neither increased dosing nor half-life extension by fusion of A4 to IgG2a Fc (A4Fc) overcame the issue of an antigen sink or, in the case of A4Fc, systemic toxicity. Generation of a B16F10 cell line that secretes the A4 nanobody showed that an enhanced response to several immune therapies requires near-complete blockade of CD47 in the tumor microenvironment. Thus, strategies to localize CD47 blockade to tumors may be particularly valuable for immune therapy.

摘要

CD47 是一种广泛表达于正常和恶性组织的抗吞噬配体,通过受体信号调节蛋白α(SIRPα)传递抑制信号。CD47-SIRPα 相互作用的抑制剂通过增强异种移植模型中的抗体依赖性细胞吞噬作用(ADCP)来改善抗肿瘤抗体反应。包括红细胞在内的多种细胞类型的内源性 CD47 表达会形成一个强大的抗原消耗池,可能会限制 CD47 靶向治疗的疗效。我们生成了一种能够阻断 CD47-SIRPα 相互作用的纳米抗体 A4。A4 与抗 PD-L1 协同作用,但与抗 CTLA4 治疗无协同作用,在同基因 B16F10 黑色素瘤模型中协同作用。增加剂量或通过将 A4 融合到 IgG2a Fc(A4Fc)来延长半衰期都不能克服抗原消耗池的问题,在 A4Fc 的情况下,还会出现全身毒性问题。生成一种分泌 A4 纳米抗体的 B16F10 细胞系表明,要增强对几种免疫疗法的反应,需要在肿瘤微环境中近乎完全阻断 CD47。因此,将 CD47 阻断定位到肿瘤的策略对于免疫治疗可能特别有价值。

相似文献

1
Localized CD47 blockade enhances immunotherapy for murine melanoma.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10184-10189. doi: 10.1073/pnas.1710776114. Epub 2017 Sep 5.
3
Targeting HDAC6 improves anti-CD47 immunotherapy.
J Exp Clin Cancer Res. 2024 Feb 27;43(1):60. doi: 10.1186/s13046-024-02982-4.
4
Durable antitumor responses to CD47 blockade require adaptive immune stimulation.
Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2646-54. doi: 10.1073/pnas.1604268113. Epub 2016 Apr 18.
5
Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy.
J Immunother Cancer. 2022 Feb;10(2). doi: 10.1136/jitc-2021-003737.
6
A polymeric nanoplatform enhances the cGAS-STING pathway in macrophages to potentiate phagocytosis for cancer immunotherapy.
J Control Release. 2024 Sep;373:447-462. doi: 10.1016/j.jconrel.2024.07.039. Epub 2024 Jul 25.
8
CD40 Enhances Type I Interferon Responses Downstream of CD47 Blockade, Bridging Innate and Adaptive Immunity.
Cancer Immunol Res. 2020 Feb;8(2):230-245. doi: 10.1158/2326-6066.CIR-19-0493. Epub 2019 Dec 18.
9
Blockade of SIRPα-CD47 axis by anti-SIRPα antibody enhances anti-tumor activity of DXd antibody-drug conjugates.
PLoS One. 2024 Jun 6;19(6):e0304985. doi: 10.1371/journal.pone.0304985. eCollection 2024.
10
Cancer immunotherapy targeting the CD47/SIRPα axis.
Eur J Cancer. 2017 May;76:100-109. doi: 10.1016/j.ejca.2017.02.013. Epub 2017 Mar 10.

引用本文的文献

1
Exploring the prognostic role of cluster of differentiation 47 in patients with advanced pancreatic cancer: a comparative cohort study.
Ann Surg Treat Res. 2025 Feb;108(2):98-106. doi: 10.4174/astr.2025.108.2.98. Epub 2025 Jan 24.
3
The Physiological and Therapeutic Role of CD47 in Macrophage Function and Cancer.
Immunol Invest. 2025 Jan;54(1):112-146. doi: 10.1080/08820139.2024.2415409. Epub 2024 Oct 17.
6
Nanobody-Engineered Biohybrid Bacteria Targeting Gastrointestinal Cancers Induce Robust STING-Mediated Anti-Tumor Immunity.
Adv Sci (Weinh). 2024 Aug;11(31):e2401905. doi: 10.1002/advs.202401905. Epub 2024 Jun 18.
10
Macrophage Checkpoint Nanoimmunotherapy Has the Potential to Reduce Malignant Progression in Bioengineered Models of Ovarian Cancer.
ACS Appl Bio Mater. 2024 Dec 16;7(12):7871-7882. doi: 10.1021/acsabm.4c00076. Epub 2024 Apr 1.

本文引用的文献

1
Targeting Immunotherapy to the Tumor Microenvironment.
J Cell Biochem. 2017 Oct;118(10):3049-3054. doi: 10.1002/jcb.26005. Epub 2017 May 15.
2
Cancer immunotherapy targeting the CD47/SIRPα axis.
Eur J Cancer. 2017 May;76:100-109. doi: 10.1016/j.ejca.2017.02.013. Epub 2017 Mar 10.
3
Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3157-3162. doi: 10.1073/pnas.1701746114. Epub 2017 Mar 7.
4
Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer.
EBioMedicine. 2016 Jun;8:40-48. doi: 10.1016/j.ebiom.2016.04.028. Epub 2016 Apr 30.
5
Durable antitumor responses to CD47 blockade require adaptive immune stimulation.
Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2646-54. doi: 10.1073/pnas.1604268113. Epub 2016 Apr 18.
6
Coinhibitory Pathways in Immunotherapy for Cancer.
Annu Rev Immunol. 2016 May 20;34:539-73. doi: 10.1146/annurev-immunol-032414-112049. Epub 2016 Feb 25.
7
Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential.
PLoS One. 2015 Sep 21;10(9):e0137345. doi: 10.1371/journal.pone.0137345. eCollection 2015.
8
CD47 blockade triggers T cell-mediated destruction of immunogenic tumors.
Nat Med. 2015 Oct;21(10):1209-15. doi: 10.1038/nm.3931. Epub 2015 Aug 31.
9
Noninvasive imaging of immune responses.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6146-51. doi: 10.1073/pnas.1502609112. Epub 2015 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验