Suppr超能文献

使用甲基化敏感高分辨率熔解技术对唾液样本进行法医年龄预测:香烟滤嘴的探索性应用。

Forensic age prediction for saliva samples using methylation-sensitive high resolution melting: exploratory application for cigarette butts.

机构信息

Department of Forensic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Forensic Science Laboratory, Kyoto Prefectural Police Headquarters, Kyoto, Japan.

出版信息

Sci Rep. 2017 Sep 5;7(1):10444. doi: 10.1038/s41598-017-10752-w.

Abstract

There is high demand for forensic age prediction in actual crime investigations. In this study, a novel age prediction model for saliva samples using methylation-sensitive high resolution melting (MS-HRM) was developed. The methylation profiles of ELOVL2 and EDARADD showed high correlations with age and were used to predict age with support vector regression. ELOVL2 was first reported as an age predictive marker for saliva samples. The prediction model showed high accuracy with a mean absolute deviation (MAD) from chronological age of 5.96 years among 197 training samples. The model was further validated with an additional 50 test samples (MAD = 6.25). In addition, the age prediction model was applied to saliva extracted from seven cigarette butts, as in an actual crime scene. The MAD (7.65 years) for these samples was slightly higher than that of intact saliva samples. A smoking habit or the ingredients of cigarettes themselves did not significantly affect the prediction model and could be ignored. MS-HRM provides a quick (2 hours) and cost-effective (95% decreased compared to that of DNA chips) method of analysis. Thus, this study may provide a novel strategy for predicting the age of a person of interest in actual crime scene investigations.

摘要

在实际犯罪调查中,法医学年龄预测的需求很高。在这项研究中,开发了一种使用甲基化敏感高分辨率熔解(MS-HRM)的新型唾液样本年龄预测模型。ELOVL2 和 EDARADD 的甲基化谱与年龄高度相关,并被用于使用支持向量回归进行年龄预测。ELOVL2 首次被报道为唾液样本的年龄预测标志物。预测模型在 197 个训练样本中表现出很高的准确性,与实际年龄的平均绝对偏差(MAD)为 5.96 岁。该模型进一步通过另外 50 个测试样本进行了验证(MAD=6.25)。此外,该年龄预测模型还应用于在实际犯罪现场从七个香烟滤嘴中提取的唾液。这些样本的 MAD(7.65 岁)略高于完整唾液样本的 MAD。吸烟习惯或香烟本身的成分并没有显著影响预测模型,可以忽略不计。MS-HRM 提供了一种快速(2 小时)且具有成本效益的(比 DNA 芯片降低 95%)分析方法。因此,这项研究可能为实际犯罪现场调查中预测感兴趣者的年龄提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f62/5585169/a98bded1453b/41598_2017_10752_Fig3_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验