Suppr超能文献

选择有利于能量效率会导致原核生物中链偏好的基因分布。

Selection for energy efficiency drives strand-biased gene distribution in prokaryotes.

机构信息

Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), 430074, Wuhan, Hubei, China.

Institute for Computer Science and Cluster of Excellence on Plant Sciences CEPLAS, Heinrich Heine University, 40225, Düsseldorf, Germany.

出版信息

Sci Rep. 2017 Sep 5;7(1):10572. doi: 10.1038/s41598-017-11159-3.

Abstract

Lagging-strand genes accumulate more deleterious mutations. Genes are thus preferably located on the leading strand, an observation known as strand-biased gene distribution (SGD). Despite of this mechanistic understanding, a satisfactory quantitative model is still lacking. Replication-transcription-collisions induce stalling of the replication machinery, expose DNA to various attacks, and are followed by error-prone repairs. We found that mutational biases in non-transcribed regions can explain ~71% of the variations in SGDs in 1,552 genomes, supporting the mutagenesis origin of SGD. Mutational biases introduce energetically cheaper nucleotides on the lagging strand, and result in more expensive protein products; consistently, the cost difference between the two strands explains ~50% of the variance in SGDs. Protein costs decrease with increasing gene expression. At similar expression levels, protein products of leading-strand genes are generally cheaper than lagging-strand genes; however, highly-expressed lagging genes are still cheaper than lowly-expressed leading genes. Selection for energy efficiency thus drives some genes to the leading strand, especially those highly expressed and essential, but certainly not all genes. Stronger mutational biases are often associated with low-GC genomes; as low-GC genes encode expensive proteins, low-GC genomes thus tend to have stronger SGDs to alleviate the stronger pressure on efficient energy usage.

摘要

滞后链基因积累更多的有害突变。因此,基因优选位于前导链上,这种观察结果被称为链偏向性基因分布(SGD)。尽管有这种机制上的理解,但仍然缺乏令人满意的定量模型。复制-转录-碰撞会导致复制机制停滞,使 DNA 暴露于各种攻击之下,并随后进行易错修复。我们发现,非转录区域的突变偏倚可以解释 1552 个基因组中 SGD 变化的约 71%,支持 SGD 的诱变起源。突变偏倚在前导链上引入能量较低的核苷酸,并导致更昂贵的蛋白质产物;一致地,两条链之间的成本差异解释了 SGD 变化的约 50%。蛋白质成本随基因表达的增加而降低。在相似的表达水平下,前导链基因的蛋白质产物通常比滞后链基因便宜;然而,高表达的滞后链基因仍然比低表达的前导链基因便宜。因此,为了提高能量效率而进行选择,导致一些基因位于前导链上,特别是那些高表达和必需的基因,但肯定不是所有基因。较弱的突变偏倚通常与低 GC 基因组相关;由于低 GC 基因编码昂贵的蛋白质,因此低 GC 基因组往往具有更强的 SGD,以减轻对高效能量利用的更强压力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ea5/5585166/593510b7c57c/41598_2017_11159_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验