1 Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain .
2 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands .
Brain Connect. 2017 Nov;7(9):541-557. doi: 10.1089/brain.2017.0525. Epub 2017 Oct 27.
A popular way to analyze resting-state electroencephalography (EEG) and magneto encephalography (MEG) data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel time series and the network connections. Although conceptually appealing, the network-theoretical approach to sensor-level EEG and MEG data is challenged by the fact that EEG and MEG time series are mixtures of source activity. It is, therefore, of interest to assess the relationship between functional networks of source activity and the ensuing sensor-level networks. Since these topological features are of high interest in experimental studies, we address the question of to what extent the network topology can be reconstructed from sensor-level functional connectivity (FC) measures in case of MEG data. Simple simulations that consider only a small number of regions do not allow to assess network properties; therefore, we use a diffusion magnetic resonance imaging-constrained whole-brain computational model of resting-state activity. Our motivation lies behind the fact that still many contributions found in the literature perform network analysis at sensor level, and we aim at showing the discrepancies between source- and sensor-level network topologies by using realistic simulations of resting-state cortical activity. Our main findings are that the effect of field spread on network topology depends on the type of interaction (instantaneous or lagged) and leads to an underestimation of lagged FC at sensor level due to instantaneous mixing of cortical signals, instantaneous interaction is more sensitive to field spread than lagged interaction, and discrepancies are reduced when using planar gradiometers rather than axial gradiometers. We, therefore, recommend using lagged interaction measures on planar gradiometer data when investigating network properties of resting-state sensor-level MEG data.
一种分析静息态脑电图(EEG)和脑磁图(MEG)数据的常用方法是将其视为一个功能网络,其中传感器被视为节点,通道时间序列与网络连接之间的相互作用。尽管从概念上看这种方法很有吸引力,但EEG 和 MEG 时间序列是源活动混合的事实,对传感器级别的 EEG 和 MEG 数据的网络理论方法提出了挑战。因此,评估源活动的功能网络与随后的传感器级网络之间的关系是很有意义的。由于这些拓扑特征在实验研究中非常重要,我们提出了这样一个问题:在 MEG 数据的情况下,从传感器级别的功能连接(FC)测量中可以在多大程度上重建网络拓扑。简单的模拟只考虑少数区域,无法评估网络属性;因此,我们使用基于扩散磁共振成像的静息状态活动的全脑计算模型。我们的动机在于,文献中仍有许多贡献是在传感器级别进行网络分析的,我们旨在通过使用静息状态皮质活动的现实模拟来显示源级和传感器级网络拓扑之间的差异。我们的主要发现是,场扩散对网络拓扑的影响取决于相互作用的类型(瞬时或滞后),并且由于皮质信号的瞬时混合,会导致传感器级别的滞后 FC 被低估,瞬时相互作用比滞后相互作用对场扩散更敏感,并且当使用平面梯度计而不是轴向梯度计时,差异会减小。因此,当研究静息状态传感器级 MEG 数据的网络属性时,我们建议在平面梯度计数据上使用滞后相互作用测量。