Spencer Ryan K, Hochbaum Allon I
Department of Chemistry and Department of Chemical Engineering & Materials Science, University of California, Irvine , Irvine, California 92697-2575, United States.
Biochemistry. 2017 Oct 10;56(40):5300-5308. doi: 10.1021/acs.biochem.7b00756. Epub 2017 Sep 25.
Coiled coils are a robust motif for exploring amino acid interactions, generating unique supramolecular structures, and expanding the functional properties of biological materials. A recently discovered antiparallel coiled-coil hexamer (ACC-Hex, peptide 1) exhibits a unique interaction in which Phe and Ile residues from adjacent α-helices interact to form a Phe-Ile zipper within the hydrophobic core. Analysis of the X-ray crystallographic structure of ACC-Hex suggests that the stability of the six-helix bundle relies on specific interactions between the Phe and Ile residues. The Phe-Ile zipper is unprecedented and represents a powerful tool for utilizing the Phe-Ile interactions to direct supramolecular assembly. To further probe and understand the limits of the Phe-Ile zipper, we designed peptide sequences with natural and unnatural amino acids placed at the Phe and Ile residue positions. Using size exclusion chromatography and small-angle X-ray scattering, we found that the proper assembly of ACC-Hex from monomers is sensitive to subtle changes in side chain steric bulk and hydrophobicity introduced by mutations at the Phe and Ile residue positions. Of the sequence variants that formed ACC-Hex, mutations in the hydrophobic core significantly affected the stability of the hexamer, from a ΔG of 2-8 kcal mol. Additional sequences were designed to further probe and enhance the stability of the ACC-Hex system by maximizing salt bridging between the solvent-exposed residues. Finally, we expanded on the generality of the Phe-Ile zipper, creating a unique sequence that forms an antiparallel hexamer that is topologically similar to ACC-Hex but atomistically unique.
卷曲螺旋是一种用于探索氨基酸相互作用、生成独特超分子结构以及扩展生物材料功能特性的强大基序。最近发现的一种反平行卷曲螺旋六聚体(ACC-Hex,肽1)表现出一种独特的相互作用,其中相邻α螺旋上的苯丙氨酸(Phe)和异亮氨酸(Ile)残基相互作用,在疏水核心内形成一个Phe-Ile拉链。对ACC-Hex的X射线晶体结构分析表明,六螺旋束的稳定性依赖于Phe和Ile残基之间的特定相互作用。Phe-Ile拉链是前所未有的,代表了一种利用Phe-Ile相互作用来指导超分子组装的强大工具。为了进一步探究和理解Phe-Ile拉链的局限性,我们设计了在Phe和Ile残基位置处含有天然和非天然氨基酸的肽序列。通过尺寸排阻色谱法和小角X射线散射,我们发现单体正确组装成ACC-Hex对Phe和Ile残基位置处突变引入的侧链空间位阻和疏水性的细微变化很敏感。在形成ACC-Hex的序列变体中,疏水核心中的突变显著影响六聚体的稳定性,自由能变化(ΔG)为2 - 8千卡/摩尔。还设计了其他序列,通过最大化溶剂暴露残基之间的盐桥来进一步探究和增强ACC-Hex系统的稳定性。最后,我们扩展了Phe-Ile拉链的通用性,创建了一个独特的序列,可以形成一个反平行六聚体,其拓扑结构与ACC-Hex相似,但原子结构独特。