Li Xiuting, Batchelor-McAuley Christopher, Laborda Eduardo, Compton Richard G
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, Oxford, OX1 3QZ, UK.
Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30100, Murcia, Spain.
Chemistry. 2017 Oct 26;23(60):15222-15226. doi: 10.1002/chem.201703525. Epub 2017 Oct 6.
In order to minimize the incidence of the CO hydrolysis and conduct aqueous electrochemistry in the virtual absence of electrolyte, a novel methodology is developed to achieve the near minimum conductivity (≈60 nS cm ) for an aqueous solution through in situ deionization with ion exchange resin beads. Aqueous electrochemistry studying the oxidations of platinum, ferrocenemethanol, and hydrogen (H ) were conducted in the near complete absence of trace ionic species at a platinum microelectrode (d=10 μm). Both surface and solution phase electrochemical reactions were clearly observed, indicating that under these conditions there is a sufficiently compressed double layer for an interfacial electron transfer to be driven and the iR effects are significantly smaller than theoretically expected.
为了将一氧化碳水解的发生率降至最低,并在几乎不存在电解质的情况下进行水电化学,开发了一种新方法,通过用离子交换树脂珠进行原位去离子化,使水溶液达到接近最低的电导率(≈60 nS·cm⁻¹)。在铂微电极(d = 10 μm)上,在几乎完全不存在痕量离子物种的情况下,进行了研究铂、二茂铁甲醇和氢气(H₂)氧化的水电化学。表面和溶液相的电化学反应均清晰可见,这表明在这些条件下,存在足够压缩的双电层以驱动界面电子转移,且iR效应明显小于理论预期。