Penney Jay, Seo Jinsoo, Kritskiy Oleg, Elmsaouri Sara, Gao Fan, Pao Ping-Chieh, Su Susan C, Tsai Li-Huei
Picower Institute for Learning and Memory and.
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139.
J Neurosci. 2017 Sep 6;37(36):8655-8666. doi: 10.1523/JNEUROSCI.0591-17.2017. Epub 2017 Aug 3.
Diverse molecular mechanisms regulate synaptic composition and function in the mammalian nervous system. The multifunctional protein arginine methyltransferase 8 (PRMT8) possesses both methyltransferase and phospholipase activities. Here we examine the role of this neuron-specific protein in hippocampal plasticity and cognitive function. PRMT8 protein localizes to synaptic sites, and conditional whole-brain deletion results in altered levels of multiple synaptic proteins in the hippocampus, using both male and female mice. Interestingly, these altered protein levels are due to post-transcriptional mechanisms as the corresponding mRNA levels are unaffected. Strikingly, electrophysiological recordings from hippocampal slices of mice lacking PRMT8 reveal multiple defects in excitatory synaptic function and plasticity. Furthermore, behavioral analyses show that PRMT8 conditional knock-out mice exhibit impaired hippocampal-dependent fear learning. Together, these findings establish PRMT8 as an important component of the molecular machinery required for hippocampal neuronal function. Numerous molecular processes are critically required for normal brain function. Here we use mice lacking protein arginine methyltransferase 8 (PRMT8) in the brain to examine how loss of this protein affects the structure and function of neurons in the hippocampus. We find that PRMT8 localizes to the sites of communication between neurons. Hippocampal neurons from mice lacking PRMT8 have no detectable structural differences compared with controls; however, multiple aspects of their function are altered. Consistently, we find that mice lacking PRMT8 also exhibit reduced hippocampus-dependent memory. Together, our findings establish important roles for PRMT8 in regulating neuron function and cognition in the mammalian brain.
多种分子机制调节哺乳动物神经系统中的突触组成和功能。多功能蛋白精氨酸甲基转移酶8(PRMT8)兼具甲基转移酶和磷脂酶活性。在此,我们研究这种神经元特异性蛋白在海马可塑性和认知功能中的作用。PRMT8蛋白定位于突触部位,利用雄性和雌性小鼠进行的条件性全脑缺失实验导致海马中多种突触蛋白水平发生改变。有趣的是,这些蛋白水平的改变是由于转录后机制,因为相应的mRNA水平未受影响。引人注目的是,对缺乏PRMT8的小鼠海马切片进行的电生理记录揭示了兴奋性突触功能和可塑性方面的多种缺陷。此外,行为分析表明,PRMT8条件性敲除小鼠表现出海马依赖性恐惧学习受损。综上所述,这些发现确立了PRMT8是海马神经元功能所需分子机制的重要组成部分。正常脑功能至关重要地需要众多分子过程。在此,我们利用脑中缺乏蛋白精氨酸甲基转移酶8(PRMT8)的小鼠来研究这种蛋白的缺失如何影响海马神经元的结构和功能。我们发现PRMT8定位于神经元之间的通讯部位。与对照组相比,缺乏PRMT8的小鼠的海马神经元没有可检测到的结构差异;然而,其功能的多个方面发生了改变。一致地,我们发现缺乏PRMT8的小鼠也表现出海马依赖性记忆减退。综上所述,我们的发现确立了PRMT8在调节哺乳动物脑神经元功能和认知方面的重要作用。