文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

环糊精催化的有机合成:反应、机制与应用。

Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications.

机构信息

School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.

Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan 750004, China.

出版信息

Molecules. 2017 Sep 7;22(9):1475. doi: 10.3390/molecules22091475.


DOI:10.3390/molecules22091475
PMID:28880241
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6151768/
Abstract

Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4) linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.

摘要

环糊精是众所周知的大环寡糖,由α-(1,4)连接的葡萄糖单元组成,由于其具有疏水性和手性内腔,已被广泛用作人工酶、手性分离剂、化学传感器和药物赋形剂。由于其对小分子有机分子的显著包合能力,最近的研究兴趣集中在环糊精催化的有机反应上。本贡献概述了环糊精催化的有机反应的最新进展。特别强调了有机反应机制及其应用。最后,提出了该领域未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/fa34bc80cb30/molecules-22-01475-sch027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/6516fbce96a2/molecules-22-01475-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/67361debff63/molecules-22-01475-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/adf1621d3fc7/molecules-22-01475-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/77622ac1d088/molecules-22-01475-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/a7955eefed38/molecules-22-01475-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/6b2b5cd02807/molecules-22-01475-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/ee2dd8251baa/molecules-22-01475-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/a8bb2ef37ef2/molecules-22-01475-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/e3b6fbbbd05f/molecules-22-01475-sch009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/6b0bee39f82e/molecules-22-01475-sch010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/ccf69e1cba6e/molecules-22-01475-sch011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/26791977880f/molecules-22-01475-sch012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/97c8fe958746/molecules-22-01475-sch013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/b2415fe2856b/molecules-22-01475-sch014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/12d709b6ba34/molecules-22-01475-sch015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/896f77b50056/molecules-22-01475-sch016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/bb8ca0ad937f/molecules-22-01475-sch017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/5c05b03816cd/molecules-22-01475-sch018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/f731aac889db/molecules-22-01475-sch019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/81d345311ef0/molecules-22-01475-sch020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/8d5e1a3f0a26/molecules-22-01475-sch021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/1eb88ddc06e0/molecules-22-01475-sch022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/a163ac600288/molecules-22-01475-sch023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/65bce047fb93/molecules-22-01475-sch024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/019ba5983387/molecules-22-01475-sch025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/47c1d0f01731/molecules-22-01475-sch026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/fa34bc80cb30/molecules-22-01475-sch027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/6516fbce96a2/molecules-22-01475-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/67361debff63/molecules-22-01475-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/adf1621d3fc7/molecules-22-01475-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/77622ac1d088/molecules-22-01475-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/a7955eefed38/molecules-22-01475-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/6b2b5cd02807/molecules-22-01475-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/ee2dd8251baa/molecules-22-01475-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/a8bb2ef37ef2/molecules-22-01475-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/e3b6fbbbd05f/molecules-22-01475-sch009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/6b0bee39f82e/molecules-22-01475-sch010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/ccf69e1cba6e/molecules-22-01475-sch011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/26791977880f/molecules-22-01475-sch012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/97c8fe958746/molecules-22-01475-sch013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/b2415fe2856b/molecules-22-01475-sch014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/12d709b6ba34/molecules-22-01475-sch015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/896f77b50056/molecules-22-01475-sch016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/bb8ca0ad937f/molecules-22-01475-sch017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/5c05b03816cd/molecules-22-01475-sch018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/f731aac889db/molecules-22-01475-sch019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/81d345311ef0/molecules-22-01475-sch020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/8d5e1a3f0a26/molecules-22-01475-sch021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/1eb88ddc06e0/molecules-22-01475-sch022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/a163ac600288/molecules-22-01475-sch023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/65bce047fb93/molecules-22-01475-sch024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/019ba5983387/molecules-22-01475-sch025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/47c1d0f01731/molecules-22-01475-sch026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83ab/6151768/fa34bc80cb30/molecules-22-01475-sch027.jpg

相似文献

[1]
Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications.

Molecules. 2017-9-7

[2]
A sustainable byproduct catalyzed domino strategy: facile synthesis of α-formyloxy and acetoxy ketones via iodination/nucleophilic substitution/hydrolyzation/oxidation sequences.

Chem Commun (Camb). 2011-10-31

[3]
Cyclodextrin based palladium catalysts for Suzuki reaction: An overview.

Carbohydr Res. 2020-2-16

[4]
Petasis vs. Strecker Amino Acid Synthesis: Convergence, Divergence and Opportunities in Organic Synthesis.

Molecules. 2021-3-18

[5]
Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.

Acc Chem Res. 2011-7-29

[6]
Versatile eco-friendly pickering emulsions based on substrate/native cyclodextrin complexes: a winning approach for solvent-free oxidations.

ChemSusChem. 2013-6-21

[7]
A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates-Bioinspired Sulfoxidation Catalysts.

Molecules. 2015-11-4

[8]
Synthesis and characterization of new polyamino-cyclodextrin materials.

Carbohydr Res. 2011-10-25

[9]
The utility of cyclodextrins in lipase-catalyzed transesterification in organic solvents: enhanced reaction rate and enantioselectivity.

Org Biomol Chem. 2003-4-21

[10]
Bio-reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis.

Curr Org Synth. 2020

引用本文的文献

[1]
Complexes of Fat-Soluble Vitamins with Cyclodextrins.

Int J Mol Sci. 2025-6-25

[2]
Efficient Red Light-Driven Singlet Oxygen Photocatalysis with an Osmium-Based Coulombic Dyad.

Angew Chem Int Ed Engl. 2025-8-25

[3]
Computational Study of Alkyne-Acid Cycloisomerization in Gold-Functionalized Resorcinarene Cavitand.

Chemistry. 2025-4-4

[4]
Regioselective Dimerization of Methylcyclopentadiene inside Cucurbit[7]uril.

Chemistry. 2025-2-25

[5]
Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry.

Research (Wash D C). 2024-9-9

[6]
Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey.

Int J Mol Sci. 2024-7-16

[7]
Cyclodextrins: Properties and Applications.

Int J Mol Sci. 2024-4-21

[8]
An Eco-friendly Strategy for the Synthesis of Spiro-benzimidazoquinazolinone and Spiro-benzothiazoloquinazolinone Derivatives using β-cyclodextrin as a Supramolecular Catalyst.

Curr Drug Discov Technol. 2024

[9]
A new β-cyclodextrin-based nickel as green and water-soluble supramolecular catalysts for aqueous Suzuki reaction.

Sci Rep. 2023-12-2

[10]
Dynamic self-assembly of supramolecular catalysts from precision macromolecules.

Chem Sci. 2023-8-16

本文引用的文献

[1]
Supramolecular amphiphiles based on cyclodextrin and hydrophobic drugs.

J Mater Chem B. 2017-4-14

[2]
The 2016 Nobel Prize for Chemistry, awarded for: "The Design and Synthesis of Molecular Machines".

Sci Prog. 2016-12-1

[3]
Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging.

Food Chem. 2017-4-18

[4]
Extraction of Epigallocatechin Gallate and Epicatechin Gallate from Tea Leaves Using β-Cyclodextrin.

J Food Sci. 2017-2

[5]
Genesis of the Nanomachines: The 2016 Nobel Prize in Chemistry.

Angew Chem Int Ed Engl. 2016-10-20

[6]
Effective cleavage of phosphodiester promoted by the zinc(II) and copper(II) inclusion complexes of β-cyclodextrin.

J Inorg Biochem. 2016-10

[7]
The US Food and Drug Administration 515 Program Initiative: Addressing the Evidence Gap for Widely Used, High-Risk Cardiovascular Devices?

JAMA Cardiol. 2016-5-1

[8]
Effects of cyclodextrins on the structure of LDL and its susceptibility to copper-induced oxidation.

Eur J Pharm Sci. 2016-8-25

[9]
Discovery of a non classic host guest complexation mode in a β-cyclodextrin/propionic acid model.

Chem Commun (Camb). 2016-2-11

[10]
Interaction of β-cyclodextrin as catalyst with acetophenone in asymmetric reaction: a theoretical survey.

J Mol Model. 2014-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索