Suppr超能文献

优化蒙特卡罗粒子输运参数,并验证一种新型高通量实验装置,以测量粒子束的生物学效应。

Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.

出版信息

Med Phys. 2017 Nov;44(11):6061-6073. doi: 10.1002/mp.12568. Epub 2017 Oct 9.

Abstract

PURPOSE

Accurate modeling of the relative biological effectiveness (RBE) of particle beams requires increased systematic in vitro studies with human cell lines with care towards minimizing uncertainties in biologic assays as well as physical parameters. In this study, we describe a novel high-throughput experimental setup and an optimized parameterization of the Monte Carlo (MC) simulation technique that is universally applicable for accurate determination of RBE of clinical ion beams. Clonogenic cell-survival measurements on a human lung cancer cell line (H460) are presented using proton irradiation.

METHODS

Experiments were performed at the Heidelberg Ion Therapy Center (HIT) with support from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg, Germany using a mono-energetic horizontal proton beam. A custom-made variable range selector was designed for the horizontal beam line using the Geant4 MC toolkit. This unique setup enabled a high-throughput clonogenic assay investigation of multiple, well defined dose and linear energy transfer (LETs) per irradiation for human lung cancer cells (H460) cultured in a 96-well plate. Sensitivity studies based on application of different physics lists in conjunction with different electromagnetic constructors and production threshold values to the MC simulations were undertaken for accurate assessment of the calculated dose and the dose-averaged LET (LET ). These studies were extended to helium and carbon ion beams.

RESULTS

Sensitivity analysis of the MC parameterization revealed substantial dependence of the dose and LET values on both the choice of physics list and the production threshold values. While the dose and LET calculations using FTFP_BERT_LIV, FTFP_BERT_EMZ, FTFP_BERT_PEN and QGSP_BIC_EMY physics lists agree well with each other for all three ions, they show large differences when compared to the FTFP_BERT physics list with the default electromagnetic constructor. For carbon ions, the dose corresponding to the largest LET value is observed to differ by as much as 78% between FTFP_BERT and FTFP_BERT_LIV. Furthermore, between the production threshold of 700 μm and 5 μm, proton dose varies by as much as 19% corresponding to the largest LET value sampled in the current investigation. Based on the sensitivity studies, the FTFP_BERT physics list with the low energy Livermore electromagnetic constructor and a production threshold of 5 μm was employed for determining accurate dose and LET . The optimized MC parameterization results in a different LET dependence of the RBE curve for 10% SF of the H460 cell line irradiated with proton beam when compared with the results from a previous study using the same cell line. When the MC parameters are kept consistent between the studies, the proton RBE results agree well with each other within the experimental uncertainties.

CONCLUSIONS

A custom high-throughput, high-accuracy experimental design for accurate in vitro cell survival measurements was employed at a horizontal beam line. High sensitivity of the physics-based optimization establishes the importance of accurate MC parameterization and hence the conditioning of the MC system on a case-by-case basis. The proton RBE results from current investigations are observed to agree with a previous measurement made under different experimental conditions. This establishes the consistency of our experimental findings across different experiments and institutions.

摘要

目的

准确模拟相对生物效应(RBE)需要增加对具有人类细胞系的系统的体外研究,并注意尽量减少生物学测定以及物理参数中的不确定性。在这项研究中,我们描述了一种新的高通量实验设置和蒙特卡罗(MC)模拟技术的优化参数化,该技术普遍适用于准确确定临床离子束的 RBE。我们使用质子辐照对人肺癌细胞系(H460)进行了克隆存活测量。

方法

在德国海德堡癌症研究中心(DKFZ)的支持下,在德国海德堡离子治疗中心(HIT)进行了实验,使用单能水平质子束。使用 Geant4 MC 工具包为水平束线设计了定制的可变范围选择器。这种独特的设置使我们能够在 96 孔板中对人肺癌细胞(H460)进行高通量克隆形成测定,对多个定义明确的剂量和线性能量传递(LET)进行调查。基于在 MC 模拟中应用不同的物理列表以及不同的电磁构造函数和产生阈值对计算剂量和剂量平均 LET(LET)进行准确评估的敏感性研究已经扩展到氦和碳离子束。

结果

MC 参数化的敏感性分析表明,剂量和 LET 值对物理列表的选择和产生阈值值都有很大的依赖性。虽然 FTFP_BERT_LIV、FTFP_BERT_EMZ、FTFP_BERT_PEN 和 QGSP_BIC_EMY 物理列表的剂量和 LET 计算彼此之间非常吻合,但与默认电磁构造函数的 FTFP_BERT 物理列表相比,它们之间存在很大差异。对于碳离子,与最大 LET 值对应的剂量差异最大可达 78%,而 FTFP_BERT 和 FTFP_BERT_LIV 之间存在差异。此外,在 700μm 和 5μm 的产生阈值之间,与当前调查中采样的最大 LET 值相对应的质子剂量变化最大可达 19%。基于敏感性研究,使用低能 Livermore 电磁构造函数和 5μm 的产生阈值的 FTFP_BERT 物理列表用于确定准确的剂量和 LET。优化的 MC 参数化导致当与使用相同细胞系的先前研究的结果进行比较时,10%SF 的 H460 细胞系用质子束照射时 RBE 曲线的 LET 依赖性不同。当在研究之间保持 MC 参数一致时,质子 RBE 结果在实验不确定度范围内彼此吻合良好。

结论

在水平束线上采用了一种定制的高通量、高精度的实验设计,用于准确的体外细胞存活测量。基于物理的优化的高灵敏度确立了准确的 MC 参数化的重要性,因此有必要根据具体情况对 MC 系统进行调节。当前研究中的质子 RBE 结果与在不同实验条件下进行的先前测量一致。这确立了我们在不同实验和机构中的实验结果的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验