Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, 13244.
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, 13244.
J Biomed Mater Res A. 2018 Jan;106(1):160-167. doi: 10.1002/jbm.a.36220. Epub 2017 Sep 26.
Fretting corrosion (or mechanically assisted corrosion, MAC) is a major corrosion mechanism in modular orthopedic implants. There is a complex interplay between fretting corrosion and the surrounding biological environment that includes particle generation and electrochemical potential excursions and currents. The goal of this work is to directly investigate the effects of fretting on cells in vitro. Using an in vitro fretting device, MC3T3 preosteoblasts were cultured onto Ti-6Al-4V disks adjacent to the fretting site. Under fretting corrosion conditions, cell viability dramatically decreased to 0.5% with the voltage drop reaching -1 V (vs. Ag/AgCl). Under the same fretting corrosion conditions, but potentiostatically holding the Ti-6Al-4V sample surface potential to -300 mV or -50 mV (vs. Ag/AgCl), the cell viability increases to 70% and 38%, respectively. The results indicate that both cathodic potential excursions and wear debris play significant roles in affecting cell viability. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 160-167, 2018.
微动腐蚀(或机械辅助腐蚀,MAC)是骨科植入物中主要的腐蚀机制。微动腐蚀与周围的生物环境之间存在着复杂的相互作用,包括颗粒的生成以及电化学电势偏移和电流。本工作的目的是直接研究微动对细胞的体外影响。使用体外微动装置,将 MC3T3 前成骨细胞培养到钛-6 铝-4 钒(Ti-6Al-4V)圆盘的微动部位附近。在微动腐蚀条件下,细胞活力急剧下降至 0.5%,电压降达到-1V(相对于 Ag/AgCl)。在相同的微动腐蚀条件下,通过恒电位将 Ti-6Al-4V 样品表面的电位保持在-300mV 或-50mV(相对于 Ag/AgCl)时,细胞活力分别增加到 70%和 38%。结果表明,阴极电势偏移和磨损颗粒都在影响细胞活力方面起着重要作用。©2017 Wiley Periodicals, Inc. J 生物材料研究杂志 A 部分:106A:160-167,2018。