CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France.
Nanoscale. 2017 Sep 21;9(36):13731-13738. doi: 10.1039/c7nr02170d.
Fungal pathogens from Candida genus are responsible for severe life-threatening infections and the antifungal arsenal is still limited. Caspofungin, an antifungal drug used for human therapy, acts as a blocking agent of the cell wall synthesis by inhibiting the β-1,3-glucan-synthase encoded by FKS genes. Despite its efficiency, the number of genetic mutants that are resistant to caspofungin is increasing. An important challenge to improve antifungal therapy is to understand cellular phenomenon that are associated with drug resistance. Here we used atomic force microscopy (AFM) combined to Fourier transform infrared spectroscopy in attenuated total reflection mode (ATR-FTIR) to decipher the effect of low and high drug concentration on the morphology, mechanics and cell wall composition of two Candida strains, one susceptible and one resistant to caspofungin. Our results confirm that caspofungin induces a dramatic cell wall remodelling via activation of stress responses, even at high drug concentration. Additionally, we highlighted unexpected changes related to drug resistance, suggesting that caspofungin resistance associated with FKS gene mutations comes from a combination of effects: (i) an overall remodelling of yeast cell wall composition; and (ii) cell wall stiffening through chitin synthesis. This work demonstrates that AFM combined to ATR-FTIR is a valuable approach to understand at the molecular scale the biological mechanisms associated with drug resistance.
真菌病原体属念珠菌可导致严重的危及生命的感染,而抗真菌药物库仍然有限。卡泊芬净是一种用于人体治疗的抗真菌药物,通过抑制 FKS 基因编码的β-1,3-葡聚糖合成酶,起到细胞壁合成的阻断剂的作用。尽管它具有疗效,但对卡泊芬净产生抗药性的基因突变体的数量正在增加。改善抗真菌治疗的一个重要挑战是要了解与耐药性相关的细胞现象。在这里,我们使用原子力显微镜(AFM)结合衰减全反射傅里叶变换红外光谱(ATR-FTIR)来破译低浓度和高浓度药物对两种念珠菌菌株形态、力学和细胞壁成分的影响,一种对卡泊芬净敏感,另一种对卡泊芬净耐药。我们的结果证实,即使在高药物浓度下,卡泊芬净也会通过激活应激反应引起剧烈的细胞壁重塑。此外,我们还强调了与耐药性相关的意外变化,表明与 FKS 基因突变相关的卡泊芬净耐药性来自于以下两种效应的结合:(i)酵母细胞壁成分的整体重塑;(ii)通过几丁质合成使细胞壁变硬。这项工作表明,AFM 结合 ATR-FTIR 是一种很有价值的方法,可以从分子水平上了解与耐药性相关的生物学机制。