Suppr超能文献

纳入丰度信息并指导变量选择以进行基于气候的物种分布变化集合预测。

Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.

作者信息

Tanner Evan P, Papeş Monica, Elmore R Dwayne, Fuhlendorf Samuel D, Davis Craig A

机构信息

Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, United States of America.

Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America.

出版信息

PLoS One. 2017 Sep 8;12(9):e0184316. doi: 10.1371/journal.pone.0184316. eCollection 2017.

Abstract

Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.

摘要

生态位模型(ENMs)越来越多地被用于估计气候变化对全球物种分布的潜在影响。最近,虽然往往缺乏关于影响物种丰度的气候变量的知识,但利用此类模型也已获得了物种丰度的预测结果。为了解决这一问题,我们使用了一个经过充分研究的类群(北美温带鹌鹑)和最大熵建模算法,来比较三种变量选择方法的模型性能:相关性/变量贡献(CVC)、生物学方法(即已知会影响物种丰度的变量)和随机方法。然后,我们应用最佳方法来预测未来气候条件下的潜在分布,并根据现有的丰度数据和仅存在的出现数据来分析未来的潜在分布。为了估计物种的分布变化,我们使用四个全球环流模型、四个代表性浓度路径和两个时间段(2050年和2070年)生成了集合预测。此外,我们展示了75%、90%和100%的集合模型达成一致的分布变化情况。在六个物种中的四个物种上,CVC变量选择方法的表现优于我们的生物学方法。模型预测表明,气候变化对北美温带鹌鹑未来分布具有物种特异性影响。在集合模型一致的所有三种情景下,甘贝尔鹌鹑(Callipepla gambelii)是唯一预测气候适宜性面积会增加的物种。相反,鳞斑鹌鹑(Callipepla squamata)是在集合模型一致的所有三种情景下唯一预测气候适宜性面积会减少的物种。我们的模型预测,北部白喉鹑(Colinus virginianus)和鳞斑鹌鹑在其目前高丰度区域的部分分布范围内,未来适宜面积将会减少。影响局部丰度的气候变量不一定总能扩大影响到物种的分布。在为生态位模型选择变量时应给予特别关注,并且应使用模型性能测试来验证变量的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验