Suppr超能文献

对旧金山湾沉积物进行nirS深度扩增子测序,能够根据反硝化群落组成预测地理位置和环境条件。

Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

作者信息

Lee Jessica A, Francis Christopher A

机构信息

Department of Earth System Science, Stanford University, Stanford, CA, USA.

出版信息

Environ Microbiol. 2017 Dec;19(12):4897-4912. doi: 10.1111/1462-2920.13920. Epub 2017 Oct 2.

Abstract

Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems.

摘要

反硝化作用是旧金山湾沉积物中主要的氮损失过程。在本研究中,我们试图通过使用新一代测序(NGS)来调查反硝化功能基因nirS(编码细胞色素cd亚硝酸盐还原酶)在一年时间里沿旧金山湾盐度梯度的多样性,从而了解反硝化细菌的生态学。我们将我们的数据集与之前通过标准PCR克隆和桑格测序从相同样本中获得的nirS序列文库进行了比较,结果表明这两种方法同样证明了地理位置、盐度以及在较小程度上的氮,是群落组成的重要决定因素。此外,NGS提供的深度使得能够采用新的技术来测量环境与群落组成之间的关联。我们使用随机森林建模来证明可以从样本的nirS序列预测样本的位点和盐度,并识别与这些环境特征相关的指示分类群。这项工作对我们理解旧金山湾反硝化群落的分布和动态有重大贡献,并为进一步研究所有河口系统中这个关键的氮循环群体提供了有价值的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验