Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg , SE-405 30 Göteborg, Sweden.
BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, SE-405 30 Göteborg, Sweden.
Nano Lett. 2017 Oct 11;17(10):6210-6216. doi: 10.1021/acs.nanolett.7b02888. Epub 2017 Sep 18.
Osteocytes are contained within spaces called lacunae and play a central role in bone remodelling. Administered frequently to prevent osteoporotic fractures, antiresorptive agents such as bisphosphonates suppress osteocyte apoptosis and may be localized within osteocyte lacunae. Bisphosphonates also reduce osteoclast viability and thereby hinder the repair of damaged tissue. Osteocyte lacunae contribute to toughening mechanisms. Following osteocyte apoptosis, the lacunar space undergoes mineralization, termed "micropetrosis". Hypermineralized lacunae are believed to increase bone fragility. Using nanoanalytical electron microscopy with complementary spectroscopic and crystallographic experiments, postapoptotic mineralization of osteocyte lacunae in bisphosphonate-exposed human bone was investigated. We report an unprecedented presence of ∼80 nm to ∼3 μm wide, distinctly faceted, magnesium whitlockite [CaMg(HPO)(PO)] crystals and consequently altered local nanomechanical properties. These findings have broad implications on the role of therapeutic agents in driving biomineralization and shed new insights into a possible relationship between bisphosphonate exposure, availability of intracellular magnesium, and pathological calcification inside lacunae.
骨细胞位于称为骨陷窝的空间内,在骨重塑中起着核心作用。为了预防骨质疏松性骨折,经常给予抗吸收剂(如双膦酸盐),它们可以抑制骨细胞凋亡,并可能定位于骨细胞陷窝内。双膦酸盐还降低破骨细胞的活力,从而阻碍受损组织的修复。骨细胞陷窝有助于增强机制。骨细胞凋亡后,骨陷窝空间发生矿化,称为“微孔骨化”。高矿化的骨陷窝被认为会增加骨脆性。本研究采用纳米分析电子显微镜与互补的光谱和结晶学实验,研究了双膦酸盐暴露的人骨中骨细胞陷窝的凋亡后矿化。我们报告了一种前所未有的存在,即约 80nm 至约 3μm 宽、明显有面的、镁方解石 [CaMg(HPO)(PO)]晶体,从而改变了局部纳米力学性能。这些发现对治疗剂在驱动生物矿化中的作用具有广泛的意义,并为双膦酸盐暴露、细胞内镁的可用性以及骨陷窝内病理性钙化之间可能存在的关系提供了新的见解。