Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, Québec, Canada.
Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, Québec, Canada.
Sci Total Environ. 2018 Jan 15;612:1018-1029. doi: 10.1016/j.scitotenv.2017.08.276. Epub 2017 Sep 7.
In a number of environmental studies, relationships between nat4ural processes are often assessed through regression analyses, using time series data. Such data are often multi-scale and non-stationary, leading to a poor accuracy of the resulting regression models and therefore to results with moderate reliability. To deal with this issue, the present paper introduces the EMD-regression methodology consisting in applying the empirical mode decomposition (EMD) algorithm on data series and then using the resulting components in regression models. The proposed methodology presents a number of advantages. First, it accounts of the issues of non-stationarity associated to the data series. Second, this approach acts as a scan for the relationship between a response variable and the predictors at different time scales, providing new insights about this relationship. To illustrate the proposed methodology it is applied to study the relationship between weather and cardiovascular mortality in Montreal, Canada. The results shed new knowledge concerning the studied relationship. For instance, they show that the humidity can cause excess mortality at the monthly time scale, which is a scale not visible in classical models. A comparison is also conducted with state of the art methods which are the generalized additive models and distributed lag models, both widely used in weather-related health studies. The comparison shows that EMD-regression achieves better prediction performances and provides more details than classical models concerning the relationship.
在许多环境研究中,通常通过回归分析使用时间序列数据来评估自然过程之间的关系。这种数据通常是多尺度和非平稳的,导致回归模型的准确性较差,因此结果的可靠性中等。为了解决这个问题,本文介绍了 EMD-回归方法,该方法包括将经验模态分解(EMD)算法应用于数据序列,然后在回归模型中使用得到的分量。所提出的方法具有许多优点。首先,它考虑了与数据序列相关的非平稳性问题。其次,这种方法可以在不同的时间尺度上扫描响应变量和预测因子之间的关系,提供关于这种关系的新见解。为了说明所提出的方法,将其应用于研究加拿大蒙特利尔的天气和心血管死亡率之间的关系。结果提供了关于所研究关系的新知识。例如,它们表明湿度会在每月时间尺度上导致超额死亡,这是经典模型中不可见的尺度。还与广泛用于与天气相关的健康研究的最先进方法(即广义加性模型和分布滞后模型)进行了比较。比较表明,EMD-回归在预测性能方面优于经典模型,并提供了更多关于关系的细节。