Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA, USA.
Peptides. 2017 Nov;97:29-45. doi: 10.1016/j.peptides.2017.09.003. Epub 2017 Sep 8.
In silico transcriptome mining is one of the most effective methods for neuropeptide discovery in crustaceans, particularly for species that are small, rare or from geographically inaccessible habitats that make obtaining the large pools of tissue needed for other peptide discovery platforms impractical. Via this approach, large peptidomes have recently been described for members of many of the higher crustacean taxa, one notable exception being the Isopoda; no peptidome has been predicted for any member of this malacostracan order. Using a publicly accessible transcriptome for the isopod Proasellus cavaticus, a subcentimeter subterranean ground water dweller, the first in silico-predicted peptidome for a member of the Isopoda is presented here. BLAST searches employing known arthropod neuropeptide pre/preprohormone queries identified 49 transcripts as encoding putative homologs within the P. cavaticus transcriptome. The proteins deduced from these transcripts allowed for the prediction of 171 distinct mature neuropeptides. The P. cavaticus peptidome includes members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, leucokinin, myosuppressin, neuroparsin, neuropeptide F, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, sulfakinin, tachykinin-related peptide and trissin families, as well as many linker/precursor-related sequences that may or may not represent additional bioactive molecules. Interestingly, many of the predicted P. cavaticus neuropeptides possess structures identical (or nearly so) to those previously described from members of several other malacostracan orders, i.e., the Decapoda, Amphipoda and Euphausiacea, a finding that suggests broad phylogenetic conservation of bioactive peptide structures, and possibly functions, may exist within the Malacostraca.
基于转录组学的方法是甲壳动物神经肽发现的最有效方法之一,特别是对于那些体型较小、数量稀少或生活在地理位置难以到达的栖息地的物种,因为获得用于其他肽类发现平台的大量组织是不切实际的。通过这种方法,最近已经描述了许多较高甲壳动物分类群的大型肽组,一个值得注意的例外是等足目;在这个软甲纲目,没有预测到任何成员的肽组。本研究利用一种可公开获取的等足目地下地下水生物 Proasellus cavaticus 的转录组,首次提出了等足目成员的第一个基于计算的预测肽组。使用已知节肢动物神经肽前/前激素原查询的 BLAST 搜索鉴定出 49 个转录本作为 P. cavaticus 转录本中编码假定同源物的基因。从这些转录本推断出的蛋白质允许预测 171 个独特的成熟神经肽。P. cavaticus 肽组包括以下成员:脂动激素-心激素样肽、allatostatin A、allatostatin B、allatostatin C、allatotropin、bursicon α、bursicon β、CCHamide、甲壳动物心活性肽、甲壳动物高血糖激素/蜕皮抑制激素、利尿激素 31、蜕皮激素、elevenin、FMRFamide 样肽、糖蛋白激素 α2、leucokinin、myosuppressin、neuroparsin、neuropeptide F、色素分散激素、pyrokinin、红色色素浓缩激素、RYamide、短神经肽 F、sulfakinin、促鲎肽相关肽和 trissin 家族,以及许多连接子/前体相关序列,这些序列可能代表或不代表其他生物活性分子。有趣的是,许多预测的 P. cavaticus 神经肽具有与以前从其他几个软甲纲目成员描述的结构相同(或几乎相同)的结构,即十足目、端足目和磷虾目,这一发现表明生物活性肽结构在软甲纲中可能存在广泛的系统发生保守性,并且可能具有相同的功能。