Flentje H, Mortemousque P-A, Thalineau R, Ludwig A, Wieck A D, Bäuerle C, Meunier T
University of Grenoble Alpes, Institut NEEL, F-38042, Grenoble, France.
CNRS, Institut NEEL, F-38042, Grenoble, France.
Nat Commun. 2017 Sep 11;8(1):501. doi: 10.1038/s41467-017-00534-3.
Controlling nanocircuits at the single electron spin level is a possible route for large-scale quantum information processing. In this context, individual electron spins have been identified as versatile quantum information carriers to interconnect different nodes of a spin-based semiconductor quantum circuit. Despite extensive experimental efforts to control the electron displacement over long distances, maintaining electron spin coherence after transfer remained elusive up to now. Here we demonstrate that individual electron spins can be displaced coherently over a distance of 5 µm. This displacement is realized on a closed path made of three tunnel-coupled lateral quantum dots at a speed approaching 100 ms. We find that the spin coherence length is eight times longer than expected from the electron spin coherence without displacement, pointing at a process similar to motional narrowing observed in nuclear magnetic resonance experiments. The demonstrated coherent displacement will open the route towards long-range interaction between distant spin qubits.The spin states of electrons in quantum dots have well-established potential for use as qubits but some proposed developments require the ability to move the quantum spin state across a larger device. Here, the authors experimentally demonstrate coherent shuttling of spins in a ring of three dots.
在单电子自旋水平上控制纳米电路是大规模量子信息处理的一条可能途径。在这种情况下,单个电子自旋已被确定为通用的量子信息载体,用于互连基于自旋的半导体量子电路的不同节点。尽管为控制电子长距离位移进行了广泛的实验努力,但到目前为止,在转移后保持电子自旋相干性仍然难以实现。在此,我们证明单个电子自旋可以在5微米的距离上相干位移。这种位移是在由三个隧道耦合横向量子点构成的闭合路径上实现的,速度接近100毫秒。我们发现自旋相干长度比无位移时电子自旋相干预期的长八倍,这指向一个类似于核磁共振实验中观察到的运动窄化的过程。所展示的相干位移将开启通往远距离自旋量子比特之间长程相互作用的道路。量子点中电子的自旋态具有用作量子比特的成熟潜力,但一些提议的发展需要能够在更大的器件上移动量子自旋态。在此,作者通过实验证明了在由三个点构成的环中自旋的相干穿梭。