Indian Institute of Science, Department of Materials Engineering, Bangalore, 560012, India.
Max-Planck-Institut für Eisenforschung, Department of Microstructure Physics and Alloy Design, Düsseldorf, 40237, Germany.
Sci Rep. 2017 Sep 11;7(1):11154. doi: 10.1038/s41598-017-11540-2.
Strengthening by precipitation of second phase is the guiding principle for the development of a host of high strength structural alloys, in particular, aluminium alloys for transportation sector. Higher efficiency and lower emission demands use of alloys at higher operating temperatures (200 °C-250 °C) and stresses, especially in applications for engine parts. Unfortunately, most of the precipitation hardened aluminium alloys that are currently available can withstand maximum temperatures ranging from 150-200 °C. This limit is set by the onset of the rapid coarsening of the precipitates and consequent loss of mechanical properties. In this communication, we present a new approach in designing an Al-based alloy through solid state precipitation route that provides a synergistic coupling of two different types of precipitates that has enabled us to develop coarsening resistant high-temperature alloys that are stable in the temperature range of 250-300 °C with strength in excess of 260 MPa at 250 °C.
通过第二相沉淀强化是许多高强度结构合金发展的指导原则,特别是用于交通运输领域的铝合金。更高的效率和更低的排放要求使用在更高工作温度(200-250°C)和应力下的合金,特别是在发动机部件的应用中。不幸的是,目前可用的大多数沉淀硬化铝合金的最高耐受温度范围在 150-200°C 之间。这一限制是由沉淀物的快速粗化和随之而来的机械性能损失引起的。在本通讯中,我们提出了一种通过固态沉淀途径设计铝基合金的新方法,该方法提供了两种不同类型沉淀物的协同耦合,使我们能够开发出在 250-300°C 温度范围内具有抗粗化能力的高温合金,在 250°C 时强度超过 260MPa。