NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
Soft Matter. 2017 Sep 27;13(37):6562-6568. doi: 10.1039/c7sm01511a.
Preventing icing on exposed surfaces is important for life and technology. While suppressing ice nucleation by surface structuring and local confinement is highly desirable and yet to be achieved, a realistic roadmap of icephobicity is to live with ice, but with lowest possible ice adhesion. According to fracture mechanics, the key to lower ice adhesion is to maximize crack driving forces at the ice-substrate interface. Herein, we present a novel integrated macro-crack initiator mechanism combining nano-crack and micro-crack initiators, and demonstrate a new approach to designing super-low ice adhesion surfaces by introducing sub-structures into smooth polydimethylsiloxane coatings. Our design promotes the initiation of macro-cracks and enables the reduction of ice adhesion by at least ∼50% regardless of the curing temperature, weight ratio and size of internal holes, reaching a lowest ice adhesion of 5.7 kPa. The multiscale crack initiator mechanisms provide an unprecedented and versatile strategy towards designing super-low ice adhesion surfaces.
防止暴露表面结冰对于生命和技术都很重要。虽然通过表面结构化和局部限制来抑制冰成核是非常理想的,但实现冰不粘性的现实途径是与冰共存,但冰的附着力尽可能低。根据断裂力学,降低冰附着力的关键是最大限度地提高冰-基底界面处的裂纹驱动力。在此,我们提出了一种新的宏观裂纹引发器机制,将纳米裂纹和微裂纹引发器结合在一起,并通过在光滑的聚二甲基硅氧烷涂层中引入亚结构来展示一种设计超低冰附着力表面的新方法。我们的设计促进了宏观裂纹的萌生,并使冰附着力降低至少 50%,而与固化温度、内部孔的重量比和大小无关,达到了最低的冰附着力 5.7 kPa。多尺度裂纹引发器机制为设计超低冰附着力表面提供了一种前所未有的通用策略。