School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou, 510641, China.
Guangdong Key Laboratory of Fuel Cell Technology , Guangzhou 510641, China.
ACS Appl Mater Interfaces. 2017 Oct 4;9(39):33896-33905. doi: 10.1021/acsami.7b09853. Epub 2017 Sep 25.
An novel exfoliation strategy to few-layered graphene (FLG) combined with in situ synthesized amorphous MnO has been established via a facile and robust ball milling route in the presence of KMnO. The facile synthesis approach has the features of low cost, environmentally friendly nature and scalable capability. As an anode for lithium-ion batteries, amorphous MnO@FLG delivered a wonderful electrochemical performance under extremely operational conditions, that is, an excellent reversible capacity of 856 mAh g at a high current density of 1 A g after 75 cycles under a high temperature of 85 °C. Those excellent electrochemical performances could be ascribed to elaborately designed three-dimensional nanostructure, the well-chosen electrolyte, significant incorporation of in situ Mn(IV) nanocrystal and few-layered graphene, and the contribution of pseudocapacitance. Remarkable electrochemical performance under a widely operational temperature window makes the amorphous MnO@FLG composites promising anode of Li-ion batteries for heavy-duty application.
一种新颖的剥离策略,将少层石墨烯(FLG)与原位合成的无定形 MnO 结合,通过在 KMnO 存在下的简便而强大的球磨路线来建立。这种简便的合成方法具有成本低、环保和可扩展的特点。作为锂离子电池的阳极,无定形 MnO@FLG 在极其苛刻的工作条件下表现出了极好的电化学性能,即在 85°C 的高温下,在 1 A/g 的高电流密度下循环 75 次后,具有出色的可逆容量 856 mAh g。这些优异的电化学性能可归因于精心设计的三维纳米结构、选择合适的电解质、原位 Mn(IV)纳米晶体和少层石墨烯的有效掺入以及赝电容的贡献。在宽工作温度窗口下的显著电化学性能使无定形 MnO@FLG 复合材料成为用于重型应用的锂离子电池有前途的阳极。