Suppr超能文献

用于估算东非杂交奶牛品种比例和亲缘关系鉴定的基因检测

Genetic tests for estimating dairy breed proportion and parentage assignment in East African crossbred cattle.

作者信息

Strucken Eva M, Al-Mamun Hawlader A, Esquivelzeta-Rabell Cecilia, Gondro Cedric, Mwai Okeyo A, Gibson John P

机构信息

School of Environmental and Rural Science, University of New England, Armidale, 2350, Australia.

Pic Improvement Company (PIC), Genetic Services, Hendersonville, TN, 37075, USA.

出版信息

Genet Sel Evol. 2017 Sep 12;49(1):67. doi: 10.1186/s12711-017-0342-1.

Abstract

BACKGROUND

Smallholder dairy farming in much of the developing world is based on the use of crossbred cows that combine local adaptation traits of indigenous breeds with high milk yield potential of exotic dairy breeds. Pedigree recording is rare in such systems which means that it is impossible to make informed breeding decisions. High-density single nucleotide polymorphism (SNP) assays allow accurate estimation of breed composition and parentage assignment but are too expensive for routine application. Our aim was to determine the level of accuracy achieved with low-density SNP assays.

METHODS

We constructed subsets of 100 to 1500 SNPs from the 735k-SNP Illumina panel by selecting: (a) on high minor allele frequencies (MAF) in a crossbred population; (b) on large differences in allele frequency between ancestral breeds; (c) at random; or (d) with a differential evolution algorithm. These panels were tested on a dataset of 1933 crossbred dairy cattle from Kenya/Uganda and on crossbred populations from Ethiopia (N = 545) and Tanzania (N = 462). Dairy breed proportions were estimated by using the ADMIXTURE program, a regression approach, and SNP-best linear unbiased prediction, and tested against estimates obtained by ADMIXTURE based on the 735k-SNP panel. Performance for parentage assignment was based on opposing homozygotes which were used to calculate the separation value (sv) between true and false assignments.

RESULTS

Panels of SNPs based on the largest differences in allele frequency between European dairy breeds and a combined Nelore/N'Dama population gave the best predictions of dairy breed proportion (r = 0.962 to 0.994 for 100 to 1500 SNPs) with an average absolute bias of 0.026. Panels of SNPs based on the highest MAF in the crossbred population (Kenya/Uganda) gave the most accurate parentage assignments (sv = -1 to 15 for 100 to 1500 SNPs).

CONCLUSIONS

Due to the different required properties of SNPs, panels that did well for breed composition did poorly for parentage assignment and vice versa. A combined panel of 400 SNPs was not able to assign parentages correctly, thus we recommend the use of 200 SNPs either for breed proportion prediction or parentage assignment, independently.

摘要

背景

在许多发展中国家,小农户奶牛养殖采用的是杂交奶牛,这些奶牛结合了本土品种的本地适应特性和外来奶牛品种的高产奶潜力。在这样的养殖系统中,谱系记录很少,这意味着无法做出明智的育种决策。高密度单核苷酸多态性(SNP)检测可准确估计品种组成和亲子关系,但对于常规应用来说成本过高。我们的目标是确定低密度SNP检测所达到的准确程度。

方法

我们从735k-SNP Illumina芯片中构建了100至1500个SNP的子集,选择方式如下:(a)基于杂交群体中的高次要等位基因频率(MAF);(b)基于祖先品种之间等位基因频率的巨大差异;(c)随机选择;或(d)使用差分进化算法。这些芯片在来自肯尼亚/乌干达的1933头杂交奶牛数据集以及来自埃塞俄比亚(N = 545)和坦桑尼亚(N = 462)的杂交群体上进行了测试。使用ADMIXTURE程序、回归方法和SNP最佳线性无偏预测来估计奶牛品种比例,并与基于735k-SNP芯片通过ADMIXTURE获得的估计值进行比较。亲子关系鉴定的性能基于对立纯合子,用于计算真实和错误鉴定之间的分离值(sv)。

结果

基于欧洲奶牛品种与内洛尔/恩达马组合群体之间等位基因频率最大差异的SNP芯片,对奶牛品种比例的预测效果最佳(100至1500个SNP时r = 0.962至0.994),平均绝对偏差为0.026。基于杂交群体(肯尼亚/乌干达)中最高MAF的SNP芯片,亲子关系鉴定最为准确(100至1500个SNP时sv = -1至15)。

结论

由于SNP所需的特性不同,在品种组成方面表现良好的芯片在亲子关系鉴定方面表现不佳,反之亦然。一个由400个SNP组成的组合芯片无法正确鉴定亲子关系,因此我们建议分别使用200个SNP进行品种比例预测或亲子关系鉴定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c081/5596489/20bf63a485aa/12711_2017_342_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验