Berry Sarah E, Gilchrist Joshua, Merritt David J
College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia,.
Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
J Insect Physiol. 2017 Nov;103:1-9. doi: 10.1016/j.jinsphys.2017.09.005. Epub 2017 Sep 9.
Glowworms, members of the keroplatid fly genus, Arachnocampa, glow to attract prey. Here we describe substantial differences in the bioluminescence regulatory systems of two species; one is a troglophile with populations both in caves and outside of caves in wet forest (Arachnocampa tasmaniensis) and the other has no known cave populations (Arachnocampa flava). We find that A. tasmaniensis is ready to initiate bioluminescence at any time darkness is encountered. In contrast, A. flava shows a homeostatic control of bioluminescence; it is unlikely to initiate bioluminescence when exposed to dark pulses during the photophase and it does so with a long latency. Another difference between the two species is that A. tasmaniensis individuals synchronize their bioluminescence in the dark zone of caves under the control of the circadian system and A. flava individuals do not synchronize to each other, rather their circadian control system entrains to the light:dark cycle to promote nocturnal bioluminescence. Consequently, we produced a phase-response curve in response to photic entrainment under constant darkness for both species. The shape of the phase-response curves differs between the two species as does the overall sensitivity to the identical entrainment conditions. The phase-response curve of A. tasmaniensis facilitates synchronization whereas that of A. flava facilitates nocturnal glowing. The two-species comparison highlights possible pathways of divergence of circadian control of physiological functions that could be associated with the extreme ecological differences experienced in cave and surface habitats.
萤火虫是扁角菌蚊属(Arachnocampa)的成员,它们发光以吸引猎物。在此,我们描述了两个物种在生物发光调节系统上的显著差异;一个是喜洞生物种,在潮湿森林的洞穴内外均有种群(塔斯马尼亚扁角菌蚊,Arachnocampa tasmaniensis),另一个则没有已知的洞穴种群(黄扁角菌蚊,Arachnocampa flava)。我们发现,塔斯马尼亚扁角菌蚊在遇到黑暗时随时准备开始发光。相比之下,黄扁角菌蚊对生物发光表现出稳态控制;在光照阶段暴露于黑暗脉冲时,它不太可能开始发光,且开始发光的延迟时间很长。这两个物种的另一个差异在于,塔斯马尼亚扁角菌蚊个体在昼夜节律系统的控制下,在洞穴的黑暗区域同步它们的生物发光,而黄扁角菌蚊个体之间不会相互同步,相反,它们的昼夜节律控制系统会与光暗周期同步,以促进夜间生物发光。因此,我们针对这两个物种在持续黑暗条件下对光诱导同步化产生了相位响应曲线。两个物种相位响应曲线的形状不同,对相同诱导条件的总体敏感性也不同。塔斯马尼亚扁角菌蚊的相位响应曲线有利于同步化,而黄扁角菌蚊的相位响应曲线则有利于夜间发光。两个物种的比较突出了昼夜节律对生理功能控制的可能分化途径,这可能与洞穴和地表栖息地所经历的极端生态差异有关。