Suppr超能文献

靶向 CXCR4 依赖性免疫抑制 Ly6C 单核细胞可改善结直肠癌的抗血管生成治疗。

Targeting CXCR4-dependent immunosuppressive Ly6C monocytes improves antiangiogenic therapy in colorectal cancer.

机构信息

Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10455-10460. doi: 10.1073/pnas.1710754114. Epub 2017 Sep 12.

Abstract

Antiangiogenic therapy with antibodies against VEGF (bevacizumab) or VEGFR2 (ramucirumab) has been proven efficacious in colorectal cancer (CRC) patients. However, the improvement in overall survival is modest and only in combination with chemotherapy. Thus, there is an urgent need to identify potential underlying mechanisms of resistance specific to antiangiogenic therapy and develop strategies to overcome them. Here we found that anti-VEGFR2 therapy up-regulates both C-X-C chemokine ligand 12 (CXCL12) and C-X-C chemokine receptor 4 (CXCR4) in orthotopic murine CRC models, including SL4 and CT26. Blockade of CXCR4 signaling significantly enhanced treatment efficacy of anti-VEGFR2 treatment in both CRC models. CXCR4 was predominantly expressed in immunosuppressive innate immune cells, which are recruited to CRCs upon anti-VEGFR2 treatment. Blockade of CXCR4 abrogated the recruitment of these innate immune cells. Importantly, these myeloid cells were mostly Ly6C monocytes and not Ly6C monocytes. To selectively deplete individual innate immune cell populations, we targeted key pathways in Ly6C monocytes ( mice), Ly6C monocytes ( mice), and neutrophils (anti-Ly6G antibody) in combination with CXCR4 blockade in SL4 CRCs. Depletion of Ly6C monocytes or neutrophils improved anti-VEGFR2-induced SL4 tumor growth delay similar to the CXCR4 blockade. In CT26 CRCs, highly resistant to anti-VEGFR2 therapy, CXCR4 blockade enhanced anti-VEGFR2-induced tumor growth delay but specific depletion of Ly6G neutrophils did not. The discovery of CXCR4-dependent recruitment of Ly6C monocytes in tumors unveiled a heretofore unknown mechanism of resistance to anti-VEGF therapies. Our findings also provide a rapidly translatable strategy to enhance the outcome of anti-VEGF cancer therapies.

摘要

抗血管生成治疗抗体针对 VEGF(贝伐珠单抗)或 VEGFR2(雷莫芦单抗)已被证明在结直肠癌(CRC)患者中有效。然而,总体生存的改善是适度的,并且仅与化疗联合使用。因此,迫切需要确定针对抗血管生成治疗的潜在耐药机制,并开发克服这些机制的策略。在这里,我们发现抗 VEGFR2 治疗在包括 SL4 和 CT26 在内的原位小鼠 CRC 模型中上调了 C-X-C 趋化因子配体 12(CXCL12)和 C-X-C 趋化因子受体 4(CXCR4)。阻断 CXCR4 信号显著增强了两种 CRC 模型中抗 VEGFR2 治疗的疗效。CXCR4 主要在免疫抑制性固有免疫细胞中表达,这些细胞在抗 VEGFR2 治疗后被募集到 CRC 中。阻断 CXCR4 可消除这些固有免疫细胞的募集。重要的是,这些髓样细胞主要是 Ly6C 单核细胞,而不是 Ly6C 单核细胞。为了选择性耗尽单个固有免疫细胞群,我们针对 Ly6C 单核细胞(小鼠)、Ly6C 单核细胞(小鼠)和中性粒细胞(抗 Ly6G 抗体)中的关键途径,并在 SL4 CRC 中结合 CXCR4 阻断进行靶向治疗。Ly6C 单核细胞或中性粒细胞的耗竭可改善抗 VEGFR2 诱导的 SL4 肿瘤生长延迟,与 CXCR4 阻断相似。在 CT26 CRC 中,抗 VEGFR2 治疗高度耐药,CXCR4 阻断增强了抗 VEGFR2 诱导的肿瘤生长延迟,但特异性耗尽 Ly6G 中性粒细胞则没有。CXCR4 依赖性肿瘤中 Ly6C 单核细胞的募集的发现揭示了一种以前未知的抗 VEGF 治疗耐药机制。我们的研究结果还提供了一种可快速转化的策略,以增强抗 VEGF 癌症治疗的效果。

相似文献

1
Targeting CXCR4-dependent immunosuppressive Ly6C monocytes improves antiangiogenic therapy in colorectal cancer.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10455-10460. doi: 10.1073/pnas.1710754114. Epub 2017 Sep 12.
2
Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy.
J Clin Invest. 2017 Aug 1;127(8):3039-3051. doi: 10.1172/JCI93182. Epub 2017 Jul 10.
3
VEGFR inhibitors upregulate CXCR4 in VEGF receptor-expressing glioblastoma in a TGFβR signaling-dependent manner.
Cancer Lett. 2015 Apr 28;360(1):60-7. doi: 10.1016/j.canlet.2015.02.005. Epub 2015 Feb 9.
5
Anti-VEGF/VEGFR2 Monoclonal Antibodies and their Combinations with PD-1/PD-L1 Inhibitors in Clinic.
Curr Cancer Drug Targets. 2020;20(1):3-18. doi: 10.2174/1568009619666191114110359.
7
CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28960-28970. doi: 10.1073/pnas.2013644117. Epub 2020 Oct 30.
8
"γδT Cell-IL17A-Neutrophil" Axis Drives Immunosuppression and Confers Breast Cancer Resistance to High-Dose Anti-VEGFR2 Therapy.
Front Immunol. 2021 Oct 15;12:699478. doi: 10.3389/fimmu.2021.699478. eCollection 2021.

引用本文的文献

4
Enhancing Colorectal Cancer Treatment Through VEGF/VEGFR Inhibitors and Immunotherapy.
Curr Treat Options Oncol. 2025 Mar;26(3):213-225. doi: 10.1007/s11864-025-01306-8. Epub 2025 Mar 6.
5
6
Neutrophil diversity and function in health and disease.
Signal Transduct Target Ther. 2024 Dec 6;9(1):343. doi: 10.1038/s41392-024-02049-y.
7
Strategies to Overcome Hurdles in Cancer Immunotherapy.
Biomater Res. 2024 Sep 19;28:0080. doi: 10.34133/bmr.0080. eCollection 2024.
8
Improving the efficacy of immunotherapy for colorectal cancer: Targeting tumor microenvironment-associated immunosuppressive cells.
Heliyon. 2024 Aug 16;10(16):e36446. doi: 10.1016/j.heliyon.2024.e36446. eCollection 2024 Aug 30.
9
Non-invasive mapping of systemic neutrophil dynamics upon cardiovascular injury.
Nat Cardiovasc Res. 2023 Feb;2(2):126-143. doi: 10.1038/s44161-022-00210-w. Epub 2023 Feb 6.

本文引用的文献

1
Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy.
J Clin Invest. 2017 Aug 1;127(8):3039-3051. doi: 10.1172/JCI93182. Epub 2017 Jul 10.
2
CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses.
J Exp Med. 2016 Oct 17;213(11):2293-2314. doi: 10.1084/jem.20160800. Epub 2016 Oct 10.
3
Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases.
Sci Transl Med. 2016 Oct 12;8(360):360ra135. doi: 10.1126/scitranslmed.aaf5219.
4
PI3Kγ is a molecular switch that controls immune suppression.
Nature. 2016 Nov 17;539(7629):437-442. doi: 10.1038/nature19834. Epub 2016 Sep 19.
5
The role of myeloid cells in cancer therapies.
Nat Rev Cancer. 2016 Jul;16(7):447-62. doi: 10.1038/nrc.2016.54.
6
Macrophage PI3Kγ Drives Pancreatic Ductal Adenocarcinoma Progression.
Cancer Discov. 2016 Aug;6(8):870-85. doi: 10.1158/2159-8290.CD-15-1346. Epub 2016 May 13.
7
Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy.
Nat Rev Cancer. 2016 May;16(5):275-87. doi: 10.1038/nrc.2016.36. Epub 2016 Apr 15.
8
The Basis of Oncoimmunology.
Cell. 2016 Mar 10;164(6):1233-1247. doi: 10.1016/j.cell.2016.01.049.
9
Coinhibitory Pathways in Immunotherapy for Cancer.
Annu Rev Immunol. 2016 May 20;34:539-73. doi: 10.1146/annurev-immunol-032414-112049. Epub 2016 Feb 25.
10
The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.
Trends Immunol. 2016 Mar;37(3):208-220. doi: 10.1016/j.it.2016.01.004. Epub 2016 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验