Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10455-10460. doi: 10.1073/pnas.1710754114. Epub 2017 Sep 12.
Antiangiogenic therapy with antibodies against VEGF (bevacizumab) or VEGFR2 (ramucirumab) has been proven efficacious in colorectal cancer (CRC) patients. However, the improvement in overall survival is modest and only in combination with chemotherapy. Thus, there is an urgent need to identify potential underlying mechanisms of resistance specific to antiangiogenic therapy and develop strategies to overcome them. Here we found that anti-VEGFR2 therapy up-regulates both C-X-C chemokine ligand 12 (CXCL12) and C-X-C chemokine receptor 4 (CXCR4) in orthotopic murine CRC models, including SL4 and CT26. Blockade of CXCR4 signaling significantly enhanced treatment efficacy of anti-VEGFR2 treatment in both CRC models. CXCR4 was predominantly expressed in immunosuppressive innate immune cells, which are recruited to CRCs upon anti-VEGFR2 treatment. Blockade of CXCR4 abrogated the recruitment of these innate immune cells. Importantly, these myeloid cells were mostly Ly6C monocytes and not Ly6C monocytes. To selectively deplete individual innate immune cell populations, we targeted key pathways in Ly6C monocytes ( mice), Ly6C monocytes ( mice), and neutrophils (anti-Ly6G antibody) in combination with CXCR4 blockade in SL4 CRCs. Depletion of Ly6C monocytes or neutrophils improved anti-VEGFR2-induced SL4 tumor growth delay similar to the CXCR4 blockade. In CT26 CRCs, highly resistant to anti-VEGFR2 therapy, CXCR4 blockade enhanced anti-VEGFR2-induced tumor growth delay but specific depletion of Ly6G neutrophils did not. The discovery of CXCR4-dependent recruitment of Ly6C monocytes in tumors unveiled a heretofore unknown mechanism of resistance to anti-VEGF therapies. Our findings also provide a rapidly translatable strategy to enhance the outcome of anti-VEGF cancer therapies.
抗血管生成治疗抗体针对 VEGF(贝伐珠单抗)或 VEGFR2(雷莫芦单抗)已被证明在结直肠癌(CRC)患者中有效。然而,总体生存的改善是适度的,并且仅与化疗联合使用。因此,迫切需要确定针对抗血管生成治疗的潜在耐药机制,并开发克服这些机制的策略。在这里,我们发现抗 VEGFR2 治疗在包括 SL4 和 CT26 在内的原位小鼠 CRC 模型中上调了 C-X-C 趋化因子配体 12(CXCL12)和 C-X-C 趋化因子受体 4(CXCR4)。阻断 CXCR4 信号显著增强了两种 CRC 模型中抗 VEGFR2 治疗的疗效。CXCR4 主要在免疫抑制性固有免疫细胞中表达,这些细胞在抗 VEGFR2 治疗后被募集到 CRC 中。阻断 CXCR4 可消除这些固有免疫细胞的募集。重要的是,这些髓样细胞主要是 Ly6C 单核细胞,而不是 Ly6C 单核细胞。为了选择性耗尽单个固有免疫细胞群,我们针对 Ly6C 单核细胞(小鼠)、Ly6C 单核细胞(小鼠)和中性粒细胞(抗 Ly6G 抗体)中的关键途径,并在 SL4 CRC 中结合 CXCR4 阻断进行靶向治疗。Ly6C 单核细胞或中性粒细胞的耗竭可改善抗 VEGFR2 诱导的 SL4 肿瘤生长延迟,与 CXCR4 阻断相似。在 CT26 CRC 中,抗 VEGFR2 治疗高度耐药,CXCR4 阻断增强了抗 VEGFR2 诱导的肿瘤生长延迟,但特异性耗尽 Ly6G 中性粒细胞则没有。CXCR4 依赖性肿瘤中 Ly6C 单核细胞的募集的发现揭示了一种以前未知的抗 VEGF 治疗耐药机制。我们的研究结果还提供了一种可快速转化的策略,以增强抗 VEGF 癌症治疗的效果。