Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Buffalo, New York 14260, United States.
Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States.
J Am Chem Soc. 2017 Oct 11;139(40):14143-14149. doi: 10.1021/jacs.7b06514. Epub 2017 Sep 26.
It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe to Fe) likely bonded with pyridinic N (FeN) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe-N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M HSO), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg/cm). Enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6-1.0 V) in O saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.
在酸性介质中,用丰富的地球元素材料替代铂族金属(PGM)催化剂来实现氧还原反应(ORR)仍然是一个巨大的挑战,这对于质子交换膜燃料电池(PEMFC)的大规模应用至关重要。在这里,我们报告了一种由化学掺杂沸石咪唑骨架(ZIFs)的 Fe 原子催化剂衍生而来的高性能催化剂,通过直接将 Fe 离子键合到 3D 骨架中的咪唑配体上来制备。虽然 ZIF 被认为是一种很有前途的前体,但新的合成化学可以在不形成聚集体的情况下,将嵌入多孔碳中的分散良好的原子 Fe 位创建出来。通过在 20 至 1000nm 的范围内合成 Fe 掺杂 ZIF 纳米晶前体,然后进行一步热激活,可以调节催化剂颗粒的尺寸。与 Pt 纳米颗粒类似,这种方法在不改变化学性质的情况下提供的独特尺寸控制能够增加无 PGM 活性位的数量。在尺寸为 50nm 时,测量得到的最佳 ORR 活性。进一步将尺寸减小到 20nm 会导致颗粒严重团聚,从而降低活性。使用均相原子 Fe 模型催化剂,我们通过将测量得到的 ORR 活性与热激活过程中前驱体中化学键的变化相关联,阐明了活性位形成过程,热激活温度最高可达 1100°C。形成活性位的临界温度为 800°C,这与一种新的 Fe 物种有关,该物种的氧化数降低(从 Fe 到 Fe),可能与嵌入碳平面中的吡啶 N(FeN)键合。进一步提高温度会导致活性不断增强,这与石墨 N 和 Fe-N 物种的增加有关。新型原子 Fe 催化剂在具有挑战性的酸性介质(0.5 M HSO)中表现出令人满意的 ORR 活性,半波电位为 0.85V 相对于 RHE,与 Pt/C(60μg/cm)的差距仅为 30mV。在饱和酸中进行 10000 次电位循环(0.6-1.0V)后,相同的催化剂稳定性增强,仅损失 20mV。这种高性能的无 PGM 原子 Fe 催化剂有望替代未来 PEMFC 中的 Pt。