a Department of Physiology and Pharmacology , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel.
b Department of Physiotherapy , Zfat Academic College , Zfat , Israel.
Channels (Austin). 2017 Nov 2;11(6):604-615. doi: 10.1080/19336950.2017.1369636. Epub 2017 Sep 21.
L-type-voltage-dependent Ca channels (L-VDCCs; Ca1.2, α), crucial in cardiovascular physiology and pathology, are modulated via activation of G-protein-coupled receptors and subsequently protein kinase C (PKC). Despite extensive study, key aspects of the mechanisms leading to PKC-induced Ca current increase are unresolved. A notable residue, Ser1928, located in the distal C-terminus (dCT) of α was shown to be phosphorylated by PKC. Ca1.2 undergoes posttranslational modifications yielding full-length and proteolytically cleaved CT-truncated forms. We have previously shown that, in Xenopus oocytes, activation of PKC enhances α macroscopic currents. This increase depended on the isoform of α expressed. Only isoforms containing the cardiac, long N-terminus (L-NT), were upregulated by PKC. Ser1928 was also crucial for the full effect of PKC. Here we report that, in Xenopus oocytes, following PKC activation the amount of α protein expressed in the plasma membrane (PM) increases within minutes. The increase in PM content is greater with full-length α than in dCT-truncated α, and requires Ser1928. The same was observed in HL-1 cells, a mouse atrium cell line natively expressing cardiac α, which undergoes the proteolytic cleavage of the dCT, thus providing a native setting for exploring the effects of PKC in cardiomyocytes. Interestingly, activation of PKC preferentially increased the PM levels of full-length, L-NT α. Our findings suggest that part of PKC regulation of Ca1.2 in the heart involves changes in channel's cellular fate. The mechanism of this PKC regulation appears to involve the C-terminus of α, possibly corroborating the previously proposed role of NT-CT interactions within α.
L 型电压依赖性钙通道(L-VDCCs;Ca1.2,α)在心血管生理学和病理学中至关重要,其通过激活 G 蛋白偶联受体和随后的蛋白激酶 C(PKC)进行调节。尽管进行了广泛的研究,但导致 PKC 诱导钙电流增加的机制的关键方面仍未解决。一个显著的残基,位于 α 的远端 C 末端(dCT)的丝氨酸 1928,被证明可被 PKC 磷酸化。Ca1.2 经历翻译后修饰,产生全长和蛋白水解切割的 CT 截断形式。我们之前已经表明,在非洲爪蟾卵母细胞中,PKC 的激活增强了 α 的宏观电流。这种增加取决于表达的 α 同工型。只有包含心脏长 N 末端(L-NT)的同工型才能被 PKC 上调。Ser1928 对于 PKC 的完全作用也是至关重要的。在这里,我们报告说,在非洲爪蟾卵母细胞中,PKC 激活后,几分钟内细胞膜(PM)中表达的 α 蛋白量增加。全长 α 的增加比 dCT 截断的 α 更多,并且需要 Ser1928。在 HL-1 细胞中也观察到了同样的情况,HL-1 细胞是一种天然表达心脏 α 的小鼠心房细胞系,它经历了 dCT 的蛋白水解切割,从而为在心肌细胞中探索 PKC 的作用提供了一个天然的环境。有趣的是,PKC 的激活优先增加了全长、L-NT α 的 PM 水平。我们的研究结果表明,PKC 对心脏中 Ca1.2 的部分调节涉及通道细胞命运的变化。这种 PKC 调节的机制似乎涉及 α 的 C 末端,可能证实了之前提出的 NT-CT 相互作用在 α 中的作用。