Ouma Cecil N M, Singh Sobhit, Obodo Kingsley O, Amolo George O, Romero Aldo H
Natural Resources and Environment, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, 0001, South Africa.
Phys Chem Chem Phys. 2017 Sep 27;19(37):25555-25563. doi: 10.1039/c7cp03160b.
The electronic, magnetic and optical properties of lanthanide substitutional doping (∼2% concentration) on the MoS monolayer have been investigated within the density functional theory formalism together with the Hubbard correction (DFT+U). The dopants investigated include Ce, Eu, Gd, Lu and Tm. The calculated dopant substitutional energies under both Mo-rich and S-rich conditions suggest that it is possible to experimentally realize the lanthanide doped MoS monolayer systems. The Eu, Gd and Tm dopants induce strong magnetization in the host lattice. The electronic structure calculations reveal that the dopants have a p-type character and they exhibit a half-metallic behavior in the Gd and Eu doped systems. A dilute magnetic semiconducting behavior can also be realized in Gd, Eu and Tm doped systems by slightly tuning the Fermi level. All the dopants refine the optical responses of the host system with the onset of the optical absorption edge shifting to lower energies within the visible range (red shift phenomenon). We observe an optical anisotropy for two different directions of the electric field (E) polarizations, i.e. parallel, E∥, and perpendicular, E⊥, to the xy-plane. Lanthanide substitutional doping significantly influences the electron energy loss spectra (EELS), absorption spectra, and dielectric properties of the host MoS monolayer. Furthermore, we notice that lanthanide substitutional doping could enhance the photocatalytic properties of the MoS monolayer.
在密度泛函理论形式体系并结合哈伯德修正(DFT + U)的框架下,研究了镧系元素替代掺杂(浓度约为2%)对二硫化钼单层的电子、磁和光学性质的影响。所研究的掺杂剂包括铈(Ce)、铕(Eu)、钆(Gd)、镥(Lu)和铥(Tm)。在富钼和富硫条件下计算得到的掺杂剂替代能表明,通过实验实现镧系元素掺杂的二硫化钼单层体系是可能的。铕、钆和铥掺杂剂在主体晶格中诱导出强磁化。电子结构计算表明,这些掺杂剂具有p型特征,并且在钆和铕掺杂体系中表现出半金属行为。通过微调费米能级,在钆、铕和铥掺杂体系中也可以实现稀磁半导体行为。所有的掺杂剂都改善了主体体系的光学响应,光学吸收边的起始位置在可见光范围内向更低能量移动(红移现象)。我们观察到电场(E)极化的两个不同方向,即平行于xy平面(E∥)和垂直于xy平面(E⊥),存在光学各向异性。镧系元素替代掺杂显著影响主体二硫化钼单层的电子能量损失谱(EELS)、吸收谱和介电性质。此外,我们注意到镧系元素替代掺杂可以增强二硫化钼单层的光催化性质。