Suppr超能文献

层积云模式的网络方法。

Network approach to patterns in stratocumulus clouds.

机构信息

National Research Council, Washington, DC 20001;

Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305.

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10578-10583. doi: 10.1073/pnas.1706495114. Epub 2017 Sep 13.

Abstract

Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth's climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis's Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.

摘要

层积云 (Sc) 对阳光被反射回太空的量有重大影响,对地球气候有重要影响。代表 Sc 及其辐射影响是全球气候模型面临的最大挑战之一。Sc 场自组织成细胞状图案,因此可以从自然细胞网络的角度进行分析和量化。基于 Sc 场的大涡模拟,我们从网络角度首次分析了 Sc 模式的几何结构和自组织。我们的网络分析表明,Sc 模式具有尺度不变性,这是由于熵最大化导致的,这被称为刘易斯定律(标度参数:0.16),并且在很大程度上与 Sc 状态无关(无云细胞中心与多云细胞中心)。细胞平均呈六边形,邻域数方差约为 2,较大的细胞往往被较小的细胞包围,这与 Aboav-Weaire 参数 0.9 相符。网络结构既不是完全随机的,也不是自然对流的特征。相反,它是由 Sc 特有的细胞分裂和细胞合并形成的,这是由细胞扩展塑造的。这通过一个包含我们对云过程的物理理解的网络动态启发式模型来展示。

相似文献

1
Network approach to patterns in stratocumulus clouds.层积云模式的网络方法。
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10578-10583. doi: 10.1073/pnas.1706495114. Epub 2017 Sep 13.
4
Evidence for climate change in the satellite cloud record.卫星云记录中气候变化的证据。
Nature. 2016 Aug 4;536(7614):72-5. doi: 10.1038/nature18273. Epub 2016 Jul 11.
9
Locally narrow droplet size distributions are ubiquitous in stratocumulus clouds.
Science. 2024 May 3;384(6695):528-532. doi: 10.1126/science.adi5550. Epub 2024 May 2.
10
The impact of parametrized convection on cloud feedback.参数化对流对云反馈的影响。
Philos Trans A Math Phys Eng Sci. 2015 Nov 13;373(2054). doi: 10.1098/rsta.2014.0414.

引用本文的文献

1
Circling in on Convective Self-Aggregation.聚焦对流自聚集
J Geophys Res Atmos. 2021 Oct 27;126(20):e2021JD035331. doi: 10.1029/2021JD035331. Epub 2021 Oct 11.
2
Particle-Based Tracking of Cold Pool Gust Fronts.基于粒子的冷池阵风锋追踪
J Adv Model Earth Syst. 2020 May;12(5):e2019MS001910. doi: 10.1029/2019MS001910. Epub 2020 May 4.

本文引用的文献

5
Universality in two-dimensional cellular structures evolving by cell division and disappearance.通过细胞分裂和消失而演变的二维细胞结构中的普遍性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031101. doi: 10.1103/PhysRevE.73.031101. Epub 2006 Mar 2.
6
7
Geometrical models of the renewal of the epidermis.
C R Acad Sci III. 2000 Jan;323(1):49-56. doi: 10.1016/s0764-4469(00)00106-2.
8
Topological correlations in cellular structures and planar graph theory.
Phys Rev Lett. 1992 Nov 2;69(18):2674-2677. doi: 10.1103/PhysRevLett.69.2674.
9
Entropic predictions for cellular networks.
Phys Rev Lett. 1991 Sep 23;67(13):1803-1806. doi: 10.1103/PhysRevLett.67.1803.
10
Topological correlations in Bénard-Marangoni convective structures.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Nov;54(5):5086-5094. doi: 10.1103/physreve.54.5086.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验