Suppr超能文献

验证 Gatortail 方法在从 3D 医学图像准确测量肺血管大小中的应用。

Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.

机构信息

Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, 32601, USA.

出版信息

Med Phys. 2017 Dec;44(12):6314-6328. doi: 10.1002/mp.12580. Epub 2017 Oct 23.

Abstract

PURPOSE

Detailed characterization of changes in vessel size is crucial for the diagnosis and management of a variety of vascular diseases. Because clinical measurement of vessel size is typically dependent on the radiologist's subjective interpretation of the vessel borders, it is often prone to high inter- and intra-user variability. Automatic methods of vessel sizing have been developed for two-dimensional images but a fully three-dimensional (3D) method suitable for vessel sizing from volumetric X-ray computed tomography (CT) or magnetic resonance imaging has heretofore not been demonstrated and validated robustly.

METHODS

In this paper, we refined and objectively validated Gatortail, a method that creates a mathematical geometric 3D model of each branch in a vascular tree, simulates the appearance of the virtual vascular tree in a 3D CT image, and uses the similarity of the simulated image to a patient's CT scan to drive the optimization of the model parameters, including vessel size, to match that of the patient. The method was validated with a 2-dimensional virtual tree structure under deformation, and with a realistic 3D-printed vascular phantom in which the diameter of 64 branches were manually measured 3 times each. The phantom was then scanned on a conventional clinical CT imaging system and the images processed with the in-house software to automatically segment and mathematically model the vascular tree, label each branch, and perform the Gatortail optimization of branch size and trajectory. Previously proposed methods of vessel sizing using matched Gaussian filters and tubularity metrics were also tested. The Gatortail method was then demonstrated on the pulmonary arterial tree segmented from a human volunteer's CT scan.

RESULTS

The standard deviation of the difference between the manually measured and Gatortail-based radii in the 3D physical phantom was 0.074 mm (0.087 in-plane pixel units for image voxels of dimension 0.85 × 0.85 × 1.0 mm) over the 64 branches, representing vessel diameters ranging from 1.2 to 7 mm. The linear regression fit gave a slope of 1.056 and an R value of 0.989. These three metrics reflect superior agreement of the radii estimates relative to previously published results over all sizes tested. Sizing via matched Gaussian filters resulted in size underestimates of >33% over all three test vessels, while the tubularity-metric matching exhibited a sizing uncertainty of >50%. In the human chest CT data set, the vessel voxel intensity profiles with and without branch model optimization showed excellent agreement and improvement in the objective measure of image similarity.

CONCLUSIONS

Gatortail has been demonstrated to be an automated, objective, accurate and robust method for sizing of vessels in 3D non-invasively from chest CT scans. We anticipate that Gatortail, an image-based approach to automatically compute estimates of blood vessel radii and trajectories from 3D medical images, will facilitate future quantitative evaluation of vascular response to disease and environmental insult and improve understanding of the biological mechanisms underlying vascular disease processes.

摘要

目的

详细描述血管大小的变化对于各种血管疾病的诊断和治疗至关重要。由于临床测量血管大小通常依赖于放射科医生对血管边界的主观解释,因此往往容易出现高度的用户间和用户内变异性。已经开发出用于二维图像的血管尺寸自动测量方法,但迄今为止尚未证明和验证完全适用于从容积 X 射线计算机断层扫描(CT)或磁共振成像进行血管尺寸测量的三维(3D)方法。

方法

在本文中,我们改进并客观验证了 Gatortail,该方法为血管树中的每个分支创建了一个数学几何 3D 模型,模拟虚拟血管树在 3D CT 图像中的外观,并使用模拟图像与患者 CT 扫描的相似性来驱动模型参数的优化,包括血管尺寸,以匹配患者的血管尺寸。该方法通过二维虚拟树结构的变形进行了验证,并通过 3D 打印血管模型进行了验证,其中手动测量了 64 个分支的直径,每个分支测量了 3 次。然后,使用内部软件在常规临床 CT 成像系统上扫描该模型,并对其进行自动分割和数学建模,标记每个分支,并执行 Gatortail 分支大小和轨迹的优化。还测试了先前提出的使用匹配高斯滤波器和管状度度量的血管尺寸测量方法。然后,在从人体志愿者 CT 扫描中分割出的肺动脉树中演示了 Gatortail 方法。

结果

在物理 3D 模型中,手动测量和基于 Gatortail 的半径之间的差异的标准偏差为 0.074mm(对于尺寸为 0.85×0.85×1.0mm 的图像体素,为 0.087 个平面像素单位),涉及 64 个分支,代表直径为 1.2 至 7mm 的血管。线性回归拟合的斜率为 1.056,R 值为 0.989。这三个指标反映了与之前在所有测试尺寸上发表的结果相比,半径估计值具有更好的一致性。通过匹配高斯滤波器进行尺寸测量会导致所有三种测试血管的尺寸低估>33%,而管状度度量匹配则表现出>50%的尺寸不确定性。在人体胸部 CT 数据集上,具有和不具有分支模型优化的血管体素强度曲线表现出极好的一致性,并提高了图像相似性的客观度量。

结论

已经证明 Gatortail 是一种自动、客观、准确和稳健的方法,可用于从胸部 CT 扫描中对 3D 非侵入性血管进行尺寸测量。我们预计,基于图像的方法 Gatortail 可自动计算 3D 医学图像中血管半径和轨迹的估计值,这将有助于未来对血管对疾病和环境刺激的反应进行定量评估,并增进对血管疾病过程中生物学机制的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验