Suppr超能文献

处理秘鲁亚马逊地区油瓜(大戟科)AFLP基因分型错误以揭示其遗传结构

Dealing with AFLP genotyping errors to reveal genetic structure in Plukenetia volubilis (Euphorbiaceae) in the Peruvian Amazon.

作者信息

Vašek Jakub, Hlásná Čepková Petra, Viehmannová Iva, Ocelák Martin, Cachique Huansi Danter, Vejl Pavel

机构信息

Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká, Prague, Czech Republic.

Gene Bank, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská, Prague, Czech Republic.

出版信息

PLoS One. 2017 Sep 14;12(9):e0184259. doi: 10.1371/journal.pone.0184259. eCollection 2017.

Abstract

An analysis of the population structure and genetic diversity for any organism often depends on one or more molecular marker techniques. Nonetheless, these techniques are not absolutely reliable because of various sources of errors arising during the genotyping process. Thus, a complex analysis of genotyping error was carried out with the AFLP method in 169 samples of the oil seed plant Plukenetia volubilis L. from small isolated subpopulations in the Peruvian Amazon. Samples were collected in nine localities from the region of San Martin. Analysis was done in eight datasets with a genotyping error from 0 to 5%. Using eleven primer combinations, 102 to 275 markers were obtained according to the dataset. It was found that it is only possible to obtain the most reliable and robust results through a multiple-level filtering process. Genotyping error and software set up influence both the estimation of population structure and genetic diversity, where in our case population number (K) varied between 2-9 depending on the dataset and statistical method used. Surprisingly, discrepancies in K number were caused more by statistical approaches than by genotyping errors themselves. However, for estimation of genetic diversity, the degree of genotyping error was critical because descriptive parameters (He, FST, PLP 5%) varied substantially (by at least 25%). Due to low gene flow, P. volubilis mostly consists of small isolated subpopulations (ΦPT = 0.252-0.323) with some degree of admixture given by socio-economic connectivity among the sites; a direct link between the genetic and geographic distances was not confirmed. The study illustrates the successful application of AFLP to infer genetic structure in non-model plants.

摘要

对任何生物体的种群结构和遗传多样性进行分析通常依赖于一种或多种分子标记技术。然而,由于基因分型过程中会出现各种误差来源,这些技术并非绝对可靠。因此,我们采用AFLP方法,对来自秘鲁亚马逊地区小的孤立亚种群的169份油籽植物多花山竹子样本进行了复杂的基因分型误差分析。样本采集于圣马丁地区的9个地点。在8个基因分型误差为0%至5%的数据集上进行了分析。使用11对引物组合,根据数据集获得了102至275个标记。研究发现,只有通过多级过滤过程才能获得最可靠和稳健的结果。基因分型误差和软件设置会影响种群结构和遗传多样性的估计,在我们的案例中,种群数量(K)根据所使用的数据集和统计方法在2至9之间变化。令人惊讶的是,K值的差异更多是由统计方法而非基因分型误差本身造成的。然而,对于遗传多样性的估计,基因分型误差的程度至关重要,因为描述性参数(He、FST、PLP 5%)变化很大(至少相差25%)。由于基因流较低,多花山竹子主要由小的孤立亚种群组成(ΦPT = 0.252 - 0.323),各地点之间的社会经济联系导致了一定程度的混合;基因距离和地理距离之间的直接联系未得到证实。该研究说明了AFLP在推断非模式植物遗传结构方面的成功应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6380/5598967/0b61789eade8/pone.0184259.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验