Suppr超能文献

用于检测复杂疾病相关高阶 SNP 组合的小生境协同搜索算法。

Niche harmony search algorithm for detecting complex disease associated high-order SNP combinations.

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, 710071, P.R. China.

School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong, 723000, P.R. China.

出版信息

Sci Rep. 2017 Sep 14;7(1):11529. doi: 10.1038/s41598-017-11064-9.

Abstract

Genome-wide association study is especially challenging in detecting high-order disease-causing models due to model diversity, possible low or even no marginal effect of the model, and extraordinary search and computations. In this paper, we propose a niche harmony search algorithm where joint entropy is utilized as a heuristic factor to guide the search for low or no marginal effect model, and two computationally lightweight scores are selected to evaluate and adapt to diverse of disease models. In order to obtain all possible suspected pathogenic models, niche technique merges with HS, which serves as a taboo region to avoid HS trapping into local search. From the resultant set of candidate SNP-combinations, we use G-test statistic for testing true positives. Experiments were performed on twenty typical simulation datasets in which 12 models are with marginal effect and eight ones are with no marginal effect. Our results indicate that the proposed algorithm has very high detection power for searching suspected disease models in the first stage and it is superior to some typical existing approaches in both detection power and CPU runtime for all these datasets. Application to age-related macular degeneration (AMD) demonstrates our method is promising in detecting high-order disease-causing models.

摘要

全基因组关联研究在检测高阶致病模型时特别具有挑战性,因为模型多样性、模型的边际效应可能较低甚至没有,以及搜索和计算的非凡性。在本文中,我们提出了一种小生境和谐搜索算法,其中联合熵被用作启发式因素来指导对低边际效应或无边际效应模型的搜索,并选择两个计算上轻量级的分数来评估和适应不同的疾病模型。为了获得所有可能的可疑致病模型,小生境技术与 HS 融合,HS 作为禁忌区域以避免 HS 陷入局部搜索。从候选 SNP 组合的集合中,我们使用 G 检验统计量来检验真阳性。在二十个典型的模拟数据集上进行了实验,其中 12 个模型具有边际效应,8 个模型没有边际效应。我们的结果表明,所提出的算法在搜索可疑疾病模型的第一阶段具有很高的检测能力,并且在所有这些数据集的检测能力和 CPU 运行时间方面都优于一些典型的现有方法。应用于年龄相关性黄斑变性 (AMD) 表明,我们的方法在检测高阶致病模型方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfc/5599559/e656a15cd776/41598_2017_11064_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验