Suppr超能文献

多群体和谐搜索算法在检测高阶 SNP 相互作用中的应用。

Multipopulation harmony search algorithm for the detection of high-order SNP interactions.

机构信息

School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China.

出版信息

Bioinformatics. 2020 Aug 15;36(16):4389-4398. doi: 10.1093/bioinformatics/btaa215.

Abstract

MOTIVATION

Recently, multiobjective swarm intelligence optimization (SIO) algorithms have attracted considerable attention as disease model-free methods for detecting high-order single nucleotide polymorphism (SNP) interactions. However, a strict Pareto optimal set may filter out some of the SNP combinations associated with disease status. Furthermore, the lack of heuristic factors for finding SNP interactions and the preference for discrimination approaches to disease models are considerable challenges for SIO.

UNLABELLED

In this study, we propose a multipopulation harmony search (HS) algorithm dedicated to the detection of high-order SNP interactions (MP-HS-DHSI). This method consists of three stages. In the first stage, HS with multipopulation (multiharmony memories) is used to discover a set of candidate high-order SNP combinations having an association with disease status. In HS, multiple criteria [Bayesian network-based K2-score, Jensen-Shannon divergence, likelihood ratio and normalized distance with joint entropy (ND-JE)] are adopted by four harmony memories to improve the ability to discriminate diverse disease models. A novel evaluation criterion named ND-JE is proposed to guide HS to explore clues for high-order SNP interactions. In the second and third stages, the G-test statistical method and multifactor dimensionality reduction are employed to verify the authenticity of the candidate solutions, respectively.

RESULTS

We compared MP-HS-DHSI with four state-of-the-art SIO algorithms for detecting high-order SNP interactions for 20 simulation disease models and a real dataset of age-related macular degeneration. The experimental results revealed that our proposed method can accelerate the search speed efficiently and enhance the discrimination ability of diverse epistasis models.

AVAILABILITY AND IMPLEMENTATION

https://github.com/shouhengtuo/MP-HS-DHSI.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

最近,多目标群体智能优化(SIO)算法作为一种无疾病模型的方法,吸引了人们对检测高阶单核苷酸多态性(SNP)相互作用的极大关注。然而,严格的帕累托最优集可能会过滤掉一些与疾病状态相关的 SNP 组合。此外,缺乏寻找 SNP 相互作用的启发式因素以及对疾病模型的区分方法的偏好,是 SIO 的重大挑战。

未加标签

在这项研究中,我们提出了一种专门用于检测高阶 SNP 相互作用(MP-HS-DHSI)的多群体和声搜索(HS)算法。该方法包括三个阶段。在第一阶段,使用具有多群体(多和声记忆)的 HS 来发现一组与疾病状态相关的候选高阶 SNP 组合。在 HS 中,通过四个和声记忆采用多个标准(基于贝叶斯网络的 K2 分数、杰恩斯-香农散度、似然比和联合熵归一化距离(ND-JE)),以提高对不同疾病模型的区分能力。提出了一个新的评价标准 ND-JE,以指导 HS 探索高阶 SNP 相互作用的线索。在第二和第三阶段,分别采用 G 检验统计方法和多因素降维来验证候选解的真实性。

结果

我们将 MP-HS-DHSI 与四种最先进的用于检测 20 种模拟疾病模型和一个与年龄相关的黄斑变性的真实数据集的高阶 SNP 相互作用的 SIO 算法进行了比较。实验结果表明,我们提出的方法可以有效地加速搜索速度,增强对不同上位模型的区分能力。

可用性和实现

https://github.com/shouhengtuo/MP-HS-DHSI。

补充信息

补充数据可在 Bioinformatics 在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验