McIntyre Julie, Johnson Brent A, Rappaport Stephen M
Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, Alaska 99775, U.S.A.
Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, U.S.A.
Biometrics. 2018 Jun;74(2):498-505. doi: 10.1111/biom.12765. Epub 2017 Sep 15.
Nonparametric regression is a fundamental problem in statistics but challenging when the independent variable is measured with error. Among the first approaches was an extension of deconvoluting kernel density estimators for homescedastic measurement error. The main contribution of this article is to propose a new simulation-based nonparametric regression estimator for the heteroscedastic measurement error case. Similar to some earlier proposals, our estimator is built on principles underlying deconvoluting kernel density estimators. However, the proposed estimation procedure uses Monte Carlo methods for estimating nonlinear functions of a normal mean, which is different than any previous estimator. We show that the estimator has desirable operating characteristics in both large and small samples and apply the method to a study of benzene exposure in Chinese factory workers.
非参数回归是统计学中的一个基本问题,但当自变量存在测量误差时具有挑战性。最早的方法之一是对同方差测量误差的反卷积核密度估计器进行扩展。本文的主要贡献是为异方差测量误差情况提出一种新的基于模拟的非参数回归估计器。与一些早期的提议类似,我们的估计器基于反卷积核密度估计器的基本原理构建。然而,所提出的估计程序使用蒙特卡罗方法来估计正态均值的非线性函数,这与以往任何估计器都不同。我们表明该估计器在大样本和小样本中都具有理想的操作特性,并将该方法应用于对中国工厂工人苯暴露的研究。