Suppr超能文献

生存分析中具有暴露测量误差的超额相对风险回归的联合非参数校正估计量

Joint nonparametric correction estimator for excess relative risk regression in survival analysis with exposure measurement error.

作者信息

Wang Ching-Yun, Cullings Harry, Song Xiao, Kopecky Kenneth J

机构信息

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, P.O. Box 19024, Seattle, WA 98109-1024, U.S.A.

Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Hiroshima 732-0815, Japan.

出版信息

J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1583-1599. doi: 10.1111/rssb.12230. Epub 2017 Feb 27.

Abstract

Observational epidemiological studies often confront the problem of estimating exposure-disease relationships when the exposure is not measured exactly. In the paper, we investigate exposure measurement error in excess relative risk regression, which is a widely used model in radiation exposure effect research. In the study cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies a generalized version of the classical additive measurement error model, but it may or may not have repeated measurements. In addition, an instrumental variable is available for individuals in a subset of the whole cohort. We develop a nonparametric correction (NPC) estimator using data from the subcohort, and further propose a joint nonparametric correction (JNPC) estimator using all observed data to adjust for exposure measurement error. An optimal linear combination estimator of JNPC and NPC is further developed. The proposed estimators are nonparametric, which are consistent without imposing a covariate or error distribution, and are robust to heteroscedastic errors. Finite sample performance is examined via a simulation study. We apply the developed methods to data from the Radiation Effects Research Foundation, in which chromosome aberration is used to adjust for the effects of radiation dose measurement error on the estimation of radiation dose responses.

摘要

观察性流行病学研究在暴露未被精确测量时,常常面临估计暴露与疾病关系的问题。在本文中,我们研究了超额相对风险回归中的暴露测量误差,这是辐射暴露效应研究中广泛使用的一种模型。在研究队列中,对于真实的未观察到的暴露变量有一个替代变量。该替代变量满足经典加性测量误差模型的广义形式,但可能有重复测量,也可能没有。此外,对于整个队列中一个子集的个体有一个工具变量。我们使用来自子队列的数据开发了一种非参数校正(NPC)估计器,并进一步提出了一种使用所有观察数据的联合非参数校正(JNPC)估计器来调整暴露测量误差。还进一步开发了JNPC和NPC的最优线性组合估计器。所提出的估计器是非参数的,在不施加协变量或误差分布的情况下是一致的,并且对异方差误差具有鲁棒性。通过模拟研究检验了有限样本性能。我们将所开发的方法应用于辐射效应研究基金会的数据,其中使用染色体畸变来调整辐射剂量测量误差对辐射剂量反应估计的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2493/5773020/f0757fe88c70/nihms909996f1.jpg

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验