Suppr超能文献

无序光子学与嵌入式纳米金等离子体耦合可实现高效光电流增强。

Disordered photonics coupled with embedded nano-Au plasmonics inducing efficient photocurrent enhancement.

作者信息

Li Jing, Wang Junling, Dai Zhihui, Li Hongbo

机构信息

Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China; College of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China.

Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.

出版信息

Talanta. 2018 Jan 1;176:428-436. doi: 10.1016/j.talanta.2017.08.005. Epub 2017 Aug 2.

Abstract

Spatial order used to be considered as a benefit for photonics; but recently the study of disorder has broken into people's horizons for its strong random scattering of light. In this work, disordered photonics coupled with plasmonics for efficiently enhanced photocurrent was first investigated using Au-ZnO nanowire array as a model. The embedded Au-ZnO nanowire array was facilely prepared using a template-free electrodeposition method. On the optimal plasmonic substrate, the photocurrent of disorder-enhanced Au-ZnO nanowire array is about 20-fold that of ZnO nanowire array. Both the plasmonic effect of Au NPs such as localized surface plasmons, surface plasmon polarizations and the disorder-enhanced photonics in the hybrid structure are available to improve the photoelectric conversion efficiency by enhancing the trapping of the simulated sunlight and the collection of charge carriers. Herein, disordered photonics was coupled with plasmonics to explain for the enhanced photocurrent. This work also provided a facile fabricating avenue for plasmonic noble metal embedded in semiconductor devices.

摘要

空间有序性曾被认为是光子学的一个优势;但最近,无序性研究因其对光的强烈随机散射而进入人们的视野。在这项工作中,首次以金-氧化锌纳米线阵列作为模型,研究了将无序光子学与等离子体激元学相结合以有效增强光电流的情况。采用无模板电沉积法轻松制备了嵌入的金-氧化锌纳米线阵列。在最佳等离子体激元基底上,无序增强的金-氧化锌纳米线阵列的光电流约为氧化锌纳米线阵列的20倍。金纳米颗粒的等离子体激元效应,如局域表面等离子体激元、表面等离子体激元极化,以及混合结构中无序增强的光子学,都可通过增强对模拟太阳光的捕获和电荷载流子的收集来提高光电转换效率。在此,将无序光子学与等离子体激元学相结合来解释增强的光电流。这项工作还为嵌入半导体器件中的等离子体激元贵金属提供了一种简便的制造途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验