Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea.
ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26421-9. doi: 10.1021/acsami.5b09947. Epub 2015 Nov 25.
When semiconducting nanostructures are combined with noble metals, the surface plasmons of the noble metals, in addition to the charge transfer interactions between the semiconductors and noble metals, can be utilized to provide strong surface plasmon effects. Here, we suggest a particle-film plasmonic system in conjunction with tapered ZnO nanowire arrays for ultrasensitive SERS chemical sensors. In this design, the gap plasmons between the metal nanoparticles and the metal films provide significantly improved surface-enhanced Raman spectroscopy (SERS) effects compared to those of interparticle surface plasmons. Furthermore, 3D tapered metal nanostructures with particle-film plasmonic systems enable efficient light trapping and waveguiding effects. To study the effects of various morphologies of ZnO nanostructures on the light trapping and thus the SERS enhancements, we compare the performance of three different ZnO morphologies: ZnO nanocones (NCs), nanonails (NNs), and nanorods (NRs). Finally, we demonstrate that our SERS chemical sensors enable a molecular level of detection capability of benzenethiol (100 zeptomole), rhodamine 6G (10 attomole), and adenine (10 attomole) molecules. This work presents a new design platform based on the 3D antireflective metal/semiconductor heterojunction nanostructures, which will play a critical role in the study of plasmonics and SERS chemical sensors.
当半导体纳米结构与贵金属结合时,贵金属的表面等离激元除了半导体与贵金属之间的电荷转移相互作用外,还可以用来提供强的表面等离激元效应。在这里,我们提出了一种粒子-薄膜等离子体系统,结合了锥形 ZnO 纳米线阵列,用于超灵敏 SERS 化学传感器。在这种设计中,金属纳米粒子和金属薄膜之间的间隙等离子体提供了比粒子间表面等离子体显著提高的表面增强拉曼光谱(SERS)效应。此外,具有粒子-薄膜等离子体系统的 3D 锥形金属纳米结构能够实现有效的光捕获和波导效应。为了研究不同形貌的 ZnO 纳米结构对光捕获的影响,从而对 SERS 增强的影响,我们比较了三种不同 ZnO 形貌的性能:ZnO 纳米锥(NCs)、纳米钉(NNs)和纳米棒(NRs)。最后,我们证明了我们的 SERS 化学传感器能够实现对苯硫醇(100 zeptomole)、罗丹明 6G(10 飞摩尔)和腺嘌呤(10 飞摩尔)分子的分子级检测能力。这项工作提出了一个基于 3D 抗反射金属/半导体异质结纳米结构的新设计平台,这将在等离子体学和 SERS 化学传感器的研究中发挥关键作用。