Baeckens Simon, García-Roa Roberto, Martín José, Van Damme Raoul
Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
J Chem Ecol. 2017 Sep;43(9):902-910. doi: 10.1007/s10886-017-0884-2. Epub 2017 Sep 16.
Lizards communicate with others via chemical signals, the composition of which may vary among species. Although the selective pressures and constraints affecting chemical signal diversity at the species level remain poorly understood, the possible role of diet has been largely neglected. The chemical signals of many lizards originate from the femoral glands that exude a mixture of semiochemicals, and may be used in a variety of contexts. We analyzed the lipophilic fraction of the glandular secretions of 45 species of lacertid lizard species by gas chromatography/mass spectrometry. The proportions of nine major chemical classes (alcohols, aldehydes, fatty acids, furanones, ketones, steroids, terpenoids, tocopherols and waxy esters), the relative contributions of these different classes ('chemical diversity'), and the total number of different lipophilic compounds ('chemical richness') varied greatly among species. We examined whether interspecific differences in these chemical variables could be coupled to interspecific variation in diet using data from the literature. In addition, we compared chemical signal composition among species that almost never, occasionally, or often eat plant material. We found little support for the hypothesis that the chemical profile of a given species' secretion depends on the type of food consumed. Diet breadth did not correlate with chemical diversity or richness. The amount of plants or ants consumed did not affect the relative contribution of any of the nine major chemical classes to the secretion. Chemical diversity did not differ among lizards with different levels of plant consumption; however, chemical richness was low in species with an exclusive arthropod diet, suggesting that incorporating plants in the diet enables lizards to increase the number of compounds allocated to secretions, likely because a (partly) herbivorous diet allows them to include compounds of plant origin that are unavailable in animal prey. Still, overall, diet appears a relatively poor predictor of interspecific differences in the broad chemical profiles of secretions of lacertid lizards.
蜥蜴通过化学信号与其他个体进行交流,其化学信号的组成可能因物种而异。尽管影响物种水平化学信号多样性的选择压力和限制因素仍知之甚少,但饮食的潜在作用在很大程度上被忽视了。许多蜥蜴的化学信号源自股腺,股腺会分泌多种信息化学物质的混合物,这些信号可用于多种情境。我们通过气相色谱/质谱法分析了45种蜥蜴科蜥蜴物种腺分泌物的亲脂性部分。九种主要化学类别(醇类、醛类、脂肪酸、呋喃酮类、酮类、类固醇、萜类化合物、生育酚和蜡酯)的比例、这些不同类别(“化学多样性”)的相对贡献以及不同亲脂性化合物的总数(“化学丰富度”)在物种间差异很大。我们利用文献数据研究了这些化学变量的种间差异是否与饮食的种间差异相关。此外,我们比较了几乎从不、偶尔或经常食用植物性物质的物种之间的化学信号组成。我们几乎没有找到证据支持这样的假设,即特定物种分泌物的化学特征取决于所食用食物的类型。饮食广度与化学多样性或丰富度无关。植物或蚂蚁的摄入量并未影响九种主要化学类别中任何一种对分泌物的相对贡献。不同植物摄入量水平的蜥蜴之间化学多样性并无差异;然而,专食节肢动物的物种化学丰富度较低,这表明将植物纳入饮食能使蜥蜴增加分配到分泌物中的化合物数量,可能是因为(部分)食草性饮食使它们能够纳入动物猎物中不存在的植物源化合物。不过总体而言,饮食似乎相对难以预测蜥蜴科蜥蜴分泌物广泛化学特征的种间差异。