Block Eric, Jang Seogjoo, Matsunami Hiroaki, Sekharan Sivakumar, Dethier Bérénice, Ertem Mehmed Z, Gundala Sivaji, Pan Yi, Li Shengju, Li Zhen, Lodge Stephene N, Ozbil Mehmet, Jiang Huihong, Penalba Sonia F, Batista Victor S, Zhuang Hanyi
Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222;
Department of Chemistry and Biochemistry, Queens College, and Graduate Center, City University of New York, Flushing, NY 11367;
Proc Natl Acad Sci U S A. 2015 May 26;112(21):E2766-74. doi: 10.1073/pnas.1503054112. Epub 2015 Apr 21.
The vibrational theory of olfaction assumes that electron transfer occurs across odorants at the active sites of odorant receptors (ORs), serving as a sensitive measure of odorant vibrational frequencies, ultimately leading to olfactory perception. A previous study reported that human subjects differentiated hydrogen/deuterium isotopomers (isomers with isotopic atoms) of the musk compound cyclopentadecanone as evidence supporting the theory. Here, we find no evidence for such differentiation at the molecular level. In fact, we find that the human musk-recognizing receptor, OR5AN1, identified using a heterologous OR expression system and robustly responding to cyclopentadecanone and muscone, fails to distinguish isotopomers of these compounds in vitro. Furthermore, the mouse (methylthio)methanethiol-recognizing receptor, MOR244-3, as well as other selected human and mouse ORs, responded similarly to normal, deuterated, and (13)C isotopomers of their respective ligands, paralleling our results with the musk receptor OR5AN1. These findings suggest that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other ORs examined. Also, contrary to the vibration theory predictions, muscone-d30 lacks the 1,380- to 1,550-cm(-1) IR bands claimed to be essential for musk odor. Furthermore, our theoretical analysis shows that the proposed electron transfer mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of nonodorant molecular vibrational modes. These and other concerns about electron transfer at ORs, together with our extensive experimental data, argue against the plausibility of the vibration theory.
嗅觉的振动理论假定,在气味受体(ORs)的活性位点上,电子转移发生在气味分子之间,作为气味分子振动频率的一种敏感测量方式,最终导致嗅觉感知。此前一项研究报告称,人类受试者能够区分麝香化合物环十五酮的氢/氘同位素异构体(含有同位素原子的异构体),以此作为支持该理论的证据。在此,我们在分子水平上未发现这种区分的证据。事实上,我们发现,利用异源OR表达系统鉴定出的、对环十五酮和麝香酮有强烈反应的人类麝香识别受体OR5AN1,在体外无法区分这些化合物的同位素异构体。此外,小鼠甲硫基甲硫醇识别受体MOR244 - 3,以及其他选定的人类和小鼠ORs,对其各自配体的正常、氘代和(13)C同位素异构体的反应相似,这与我们对麝香受体OR5AN1的研究结果一致。这些发现表明,所提出的振动理论不适用于人类麝香受体OR5AN1、小鼠硫醇受体MOR244 - 3或其他所检测的ORs。而且,与振动理论的预测相反,氘代30个原子的麝香酮缺乏据称对麝香气味至关重要的1380至1550厘米(-1)红外波段。此外,我们的理论分析表明,所提出的气味分子振动频率的电子转移机制很容易被非气味分子振动模式的量子效应所抑制。这些以及其他关于ORs上电子转移的问题,连同我们广泛的实验数据,都对振动理论的合理性提出了质疑。