Suppr超能文献

酿酒酵母内含子套索剪接体的结构。

Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae.

机构信息

Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.

Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.

出版信息

Cell. 2017 Sep 21;171(1):120-132.e12. doi: 10.1016/j.cell.2017.08.029. Epub 2017 Sep 14.

Abstract

The disassembly of the intron lariat spliceosome (ILS) marks the end of a splicing cycle. Here we report a cryoelectron microscopy structure of the ILS complex from Saccharomyces cerevisiae at an average resolution of 3.5 Å. The intron lariat remains bound in the spliceosome whereas the ligated exon is already dissociated. The step II splicing factors Prp17 and Prp18, along with Cwc21 and Cwc22 that stabilize the 5' exon binding to loop I of U5 small nuclear RNA (snRNA), have been released from the active site assembly. The DEAH family ATPase/helicase Prp43 binds Syf1 at the periphery of the spliceosome, with its RNA-binding site close to the 3' end of U6 snRNA. The C-terminal domain of Ntr1/Spp382 associates with the GTPase Snu114, and Ntr2 is anchored to Prp8 while interacting with the superhelical domain of Ntr1. These structural features suggest a plausible mechanism for the disassembly of the ILS complex.

摘要

内含子套索剪接体 (ILS) 的解体标志着剪接循环的结束。在这里,我们报告了来自酿酒酵母的 ILS 复合物的冷冻电子显微镜结构,平均分辨率为 3.5 Å。内含子套索仍结合在剪接体中,而连接的外显子已经解离。步骤 II 的剪接因子 Prp17 和 Prp18,以及稳定 5' 外显子与 U5 小核 RNA (snRNA) 环 I 结合的 Cwc21 和 Cwc22,已从活性位点组装中释放出来。DEAH 家族 ATP 酶/解旋酶 Prp43 在剪接体的外围与 Syf1 结合,其 RNA 结合位点靠近 U6 snRNA 的 3' 端。Ntr1/Spp382 的 C 端结构域与 GTP 酶 Snu114 结合,而 Ntr2 与 Prp8 锚定,同时与 Ntr1 的超螺旋结构域相互作用。这些结构特征表明了 ILS 复合物解体的一种合理机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验