Suppr超能文献

相似文献

1
DAX - The Next Generation: Towards One Million Processes on Commodity Hardware.
Proc SPIE Int Soc Opt Eng. 2017;2017. doi: 10.1117/12.2254371. Epub 2017 Mar 13.
2
Towards Portable Large-Scale Image Processing with High-Performance Computing.
J Digit Imaging. 2018 Jun;31(3):304-314. doi: 10.1007/s10278-018-0080-0.
3
Integrating the BIDS Neuroimaging Data Format and Workflow Optimization for Large-Scale Medical Image Analysis.
J Digit Imaging. 2022 Dec;35(6):1576-1589. doi: 10.1007/s10278-022-00679-8. Epub 2022 Aug 3.
4
PyXNAT: XNAT in Python.
Front Neuroinform. 2012 May 24;6:12. doi: 10.3389/fninf.2012.00012. eCollection 2012.
5
Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.
Neuroimage. 2016 Jan 1;124(Pt B):1097-1101. doi: 10.1016/j.neuroimage.2015.05.021. Epub 2015 May 16.
6
Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer.
Front Neuroinform. 2014 May 27;8:53. doi: 10.3389/fninf.2014.00053. eCollection 2014.
7
Rxnat: An Open-Source R Package for XNAT-Based Repositories.
Front Neuroinform. 2020 Nov 9;14:572068. doi: 10.3389/fninf.2020.572068. eCollection 2020.
9
The impact of Docker containers on the performance of genomic pipelines.
PeerJ. 2015 Sep 24;3:e1273. doi: 10.7717/peerj.1273. eCollection 2015.
10
XNAT-PIC: Extending XNAT to Preclinical Imaging Centers.
J Digit Imaging. 2022 Aug;35(4):860-875. doi: 10.1007/s10278-022-00612-z. Epub 2022 Mar 18.

引用本文的文献

1
Automatic Preprocessing Pipeline for White Matter Functional Analyses of Large-Scale Databases.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2653132. Epub 2023 Apr 3.
2
Integrating the BIDS Neuroimaging Data Format and Workflow Optimization for Large-Scale Medical Image Analysis.
J Digit Imaging. 2022 Dec;35(6):1576-1589. doi: 10.1007/s10278-022-00679-8. Epub 2022 Aug 3.
3
Application of Machine Learning to Automated Analysis of Cerebral Edema in Large Cohorts of Ischemic Stroke Patients.
Front Neurol. 2018 Aug 21;9:687. doi: 10.3389/fneur.2018.00687. eCollection 2018.
4
Towards Portable Large-Scale Image Processing with High-Performance Computing.
J Digit Imaging. 2018 Jun;31(3):304-314. doi: 10.1007/s10278-018-0080-0.

本文引用的文献

1
Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9789. doi: 10.1117/12.2217396. Epub 2016 Mar 25.
2
Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.
Neuroimage. 2016 Jan 1;124(Pt B):1097-1101. doi: 10.1016/j.neuroimage.2015.05.021. Epub 2015 May 16.
4
PyXNAT: XNAT in Python.
Front Neuroinform. 2012 May 24;6:12. doi: 10.3389/fninf.2012.00012. eCollection 2012.
5
FreeSurfer.
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.
6
SPM: a history.
Neuroimage. 2012 Aug 15;62(2):791-800. doi: 10.1016/j.neuroimage.2011.10.025. Epub 2011 Oct 17.
7
The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.
Neuroinformatics. 2010 Mar;8(1):5-17. doi: 10.1007/s12021-009-9061-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验