Suppr超能文献

Java 图像科学工具包 (JIST),用于快速原型设计和发布神经影像学软件。

The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Neuroinformatics. 2010 Mar;8(1):5-17. doi: 10.1007/s12021-009-9061-2.

Abstract

Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

摘要

非侵入性神经影像学技术使我们能够对生物机制的结构、功能反应和连接进行极其敏感和特异的活体研究。这些先进的方法对基于计算机的处理、分析和解释有很强的依赖性。虽然神经影像学领域已经产生了许多优秀的学术和商业工具包,但通常需要新的工具来解释新的模式和范例。开发定制工具并确保与现有工具的互操作性是一个重大的障碍。为了解决这些限制,我们提出了一个新的算法开发框架,该框架隐含地确保了工具的互操作性,生成图形用户界面,提供高级批处理工具,最重要的是,只需要很少的额外编程或计算开销。使用这个系统进行基于 Java 的快速原型设计是评估新算法的一种有效和实用的方法,因为所提出的系统确保了快速构建的原型实际上是具有多个图形用户界面、广泛的文件格式支持和分布式计算支持的全功能处理模块。在这里,我们展示了使用所提出的系统进行皮质表面提取的 MRI 图像处理,提供了一种用于全自动扩散张量图像分析的系统,并说明了如何将该系统用作开发新图像分析方法的模拟框架。该系统是根据较小的 GNU 公共许可证(LGPL)通过神经影像学信息学工具和资源知识库(NITRC)以开源形式发布的。

相似文献

6
From MRIcro to MRIcron: The evolution of neuroimaging visualization tools.从MRIcro到MRIcron:神经影像可视化工具的演变。
Neuropsychologia. 2025 Jan 29;207:109067. doi: 10.1016/j.neuropsychologia.2025.109067. Epub 2025 Jan 4.
9
Polymorph segmentation representation for medical image computing.多态分割表示在医学图像计算中的应用。
Comput Methods Programs Biomed. 2019 Apr;171:19-26. doi: 10.1016/j.cmpb.2019.02.011. Epub 2019 Feb 21.

引用本文的文献

1
aXonica: A support package for MRI based Neuroimaging.Axonica:一个基于磁共振成像的神经成像支持软件包。
Biotechnol Notes. 2024 Aug 22;5:120-136. doi: 10.1016/j.biotno.2024.08.001. eCollection 2024.
4
The 3D Structural Architecture of the Human Hand Area Is Nontopographic.人类手部区域的 3D 结构架构是非地形的。
J Neurosci. 2023 May 10;43(19):3456-3476. doi: 10.1523/JNEUROSCI.1692-22.2023. Epub 2023 Mar 31.

本文引用的文献

1
Neuroinformatics and the Society for Neuroscience.神经信息学与神经科学学会。
Neuroinformatics. 2007 Sep;5(3):141-2. doi: 10.1007/s12021-007-0014-3.
10
The LONI Pipeline Processing Environment.洛尼管道处理环境。
Neuroimage. 2003 Jul;19(3):1033-48. doi: 10.1016/s1053-8119(03)00185-x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验