Suppr超能文献

Java 图像科学工具包 (JIST),用于快速原型设计和发布神经影像学软件。

The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Neuroinformatics. 2010 Mar;8(1):5-17. doi: 10.1007/s12021-009-9061-2.

Abstract

Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

摘要

非侵入性神经影像学技术使我们能够对生物机制的结构、功能反应和连接进行极其敏感和特异的活体研究。这些先进的方法对基于计算机的处理、分析和解释有很强的依赖性。虽然神经影像学领域已经产生了许多优秀的学术和商业工具包,但通常需要新的工具来解释新的模式和范例。开发定制工具并确保与现有工具的互操作性是一个重大的障碍。为了解决这些限制,我们提出了一个新的算法开发框架,该框架隐含地确保了工具的互操作性,生成图形用户界面,提供高级批处理工具,最重要的是,只需要很少的额外编程或计算开销。使用这个系统进行基于 Java 的快速原型设计是评估新算法的一种有效和实用的方法,因为所提出的系统确保了快速构建的原型实际上是具有多个图形用户界面、广泛的文件格式支持和分布式计算支持的全功能处理模块。在这里,我们展示了使用所提出的系统进行皮质表面提取的 MRI 图像处理,提供了一种用于全自动扩散张量图像分析的系统,并说明了如何将该系统用作开发新图像分析方法的模拟框架。该系统是根据较小的 GNU 公共许可证(LGPL)通过神经影像学信息学工具和资源知识库(NITRC)以开源形式发布的。

相似文献

1
The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.
Neuroinformatics. 2010 Mar;8(1):5-17. doi: 10.1007/s12021-009-9061-2.
2
BrainImageJ: a Java-based framework for interoperability in neuroscience, with specific application to neuroimaging.
J Am Med Inform Assoc. 2001 Sep-Oct;8(5):431-42. doi: 10.1136/jamia.2001.0080431.
3
The RUMBA software: tools for neuroimaging data analysis.
Neuroinformatics. 2004;2(1):71-100. doi: 10.1385/NI:2:1:071.
5
Fiswidgets: a graphical computing environment for neuroimaging analysis.
Neuroinformatics. 2003;1(1):111-25. doi: 10.1385/ni:1:1:111.
6
From MRIcro to MRIcron: The evolution of neuroimaging visualization tools.
Neuropsychologia. 2025 Jan 29;207:109067. doi: 10.1016/j.neuropsychologia.2025.109067. Epub 2025 Jan 4.
8
Unified framework for development, deployment and robust testing of neuroimaging algorithms.
Neuroinformatics. 2011 Mar;9(1):69-84. doi: 10.1007/s12021-010-9092-8.
9
Polymorph segmentation representation for medical image computing.
Comput Methods Programs Biomed. 2019 Apr;171:19-26. doi: 10.1016/j.cmpb.2019.02.011. Epub 2019 Feb 21.
10
NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
Neuroimage. 2020 Oct 1;219:117020. doi: 10.1016/j.neuroimage.2020.117020. Epub 2020 Jun 6.

引用本文的文献

1
aXonica: A support package for MRI based Neuroimaging.
Biotechnol Notes. 2024 Aug 22;5:120-136. doi: 10.1016/j.biotno.2024.08.001. eCollection 2024.
2
Age-related differences in human cortical microstructure depend on the distance to the nearest vein.
Brain Commun. 2024 Sep 19;6(5):fcae321. doi: 10.1093/braincomms/fcae321. eCollection 2024.
3
Study protocol of IMAGINE-HD: Imaging iron accumulation and neuroinflammation with 7T-MRI + CSF in Huntington's disease.
Neuroimage Clin. 2023;39:103450. doi: 10.1016/j.nicl.2023.103450. Epub 2023 Jun 8.
4
The 3D Structural Architecture of the Human Hand Area Is Nontopographic.
J Neurosci. 2023 May 10;43(19):3456-3476. doi: 10.1523/JNEUROSCI.1692-22.2023. Epub 2023 Mar 31.
6
Integrating the BIDS Neuroimaging Data Format and Workflow Optimization for Large-Scale Medical Image Analysis.
J Digit Imaging. 2022 Dec;35(6):1576-1589. doi: 10.1007/s10278-022-00679-8. Epub 2022 Aug 3.
7
Blood-brain barrier breakdown in non-enhancing multiple sclerosis lesions detected by 7-Tesla MP2RAGE ΔT1 mapping.
PLoS One. 2021 Apr 26;16(4):e0249973. doi: 10.1371/journal.pone.0249973. eCollection 2021.
8
Sex-specific differences in rim appearance of multiple sclerosis lesions on quantitative susceptibility mapping.
Mult Scler Relat Disord. 2020 Oct;45:102317. doi: 10.1016/j.msard.2020.102317. Epub 2020 Jun 18.
9
7T MPFLAIR versus MP2RAGE for Quantifying Lesion Volume in Multiple Sclerosis.
J Neuroimaging. 2020 Jul;30(4):531-536. doi: 10.1111/jon.12718. Epub 2020 Jun 22.
10
TAPAS: A Thresholding Approach for Probability Map Automatic Segmentation in Multiple Sclerosis.
Neuroimage Clin. 2020;27:102256. doi: 10.1016/j.nicl.2020.102256. Epub 2020 May 16.

本文引用的文献

1
Neuroinformatics and the Society for Neuroscience.
Neuroinformatics. 2007 Sep;5(3):141-2. doi: 10.1007/s12021-007-0014-3.
2
The Khoros software development environment for image and signal processing.
IEEE Trans Image Process. 1994;3(3):243-52. doi: 10.1109/83.287018.
5
CRUISE: cortical reconstruction using implicit surface evolution.
Neuroimage. 2004 Nov;23(3):997-1012. doi: 10.1016/j.neuroimage.2004.06.043.
6
Advances in functional and structural MR image analysis and implementation as FSL.
Neuroimage. 2004;23 Suppl 1:S208-19. doi: 10.1016/j.neuroimage.2004.07.051.
8
Mapping techniques for aligning sulci across multiple brains.
Med Image Anal. 2004 Sep;8(3):295-309. doi: 10.1016/j.media.2004.06.020.
9
Fiswidgets: a graphical computing environment for neuroimaging analysis.
Neuroinformatics. 2003;1(1):111-25. doi: 10.1385/ni:1:1:111.
10
The LONI Pipeline Processing Environment.
Neuroimage. 2003 Jul;19(3):1033-48. doi: 10.1016/s1053-8119(03)00185-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验