Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju, 305-353, Korea.
Nanoscale. 2017 Sep 28;9(37):13976-13982. doi: 10.1039/c7nr03684a.
We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.
我们已经证明,对杂质高度敏感的韦尔韦尔转变在各向异性的镝掺杂磁铁矿纳米粒子中得以保留。透射电子显微镜分析表明,纳米粒子均匀分布。X 射线光电子能谱和 EDS 图谱分析证实了纳米粒子上的镝掺杂。镝掺杂磁铁矿纳米粒子的韦尔韦尔转变很稳健,磁矩的温度依赖性(零场冷却和磁场冷却)与块状磁铁矿中的韦尔韦尔转变表现出相同的行为,但其转变温度较低(约 110 K)。此外,不规则形状的纳米粒子不会出现韦尔韦尔转变,而方形纳米粒子则会出现转变。穆斯堡尔光谱分析表明,磁超精细场的斜率和电四极分裂在相同的温度下发生变化,这意味着韦尔韦尔转变发生在约 110 K。这些结果将为理解纳米材料中的韦尔韦尔转变提供新的见解。