Suppr超能文献

基于果胶的胸膜密封剂在肺损伤后的功能力学。

Functional Mechanics of a Pectin-Based Pleural Sealant after Lung Injury.

机构信息

1 Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts.

2 Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany .

出版信息

Tissue Eng Part A. 2018 May;24(9-10):695-702. doi: 10.1089/ten.tea.2017.0299. Epub 2018 Jan 5.

Abstract

Pleural injury and associated air leaks are a major influence on patient morbidity and healthcare costs after lung surgery. Pectin, a plant-derived heteropolysaccharide, has recently demonstrated potential as an adhesive binding to the glycocalyx of visceral mesothelium. Since bioadhesion is a process likely involving the interpenetration of the pectin-based polymer with the glycocalyx, we predicted that the pectin-based polymer may also be an effective sealant for pleural injury. To explore the potential role of an equal (weight%) mixture of high-methoxyl pectin and carboxymethylcellulose as a pleural sealant, we compared the yield strength of the pectin-based polymer to commonly available surgical products. The pectin-based polymer demonstrated significantly greater adhesion to the lung pleura than the comparison products (p < 0.001). In a 25 g needle-induced lung injury model, pleural injury resulted in an air leak and a loss of airway pressures. After application of the pectin-based polymer, there was a restoration of airway pressure and no measurable air leak. Despite the application of large sheets (50 mm) of the pectin-based polymer, multifrequency lung impedance studies demonstrated no significant increase in tissue damping (G) or hysteresivity (η)(p > 0.05). In 7-day survival experiments, the application of the pectin-based polymer after pleural injury was associated with no observable toxicity, 100% survival (N = 5), and restored lung function. We conclude that this pectin-based polymer is a strong and nontoxic bioadhesive with the potential for clinical application in the treatment of pleural injuries.

摘要

胸膜损伤和相关的空气泄漏是肺手术后患者发病率和医疗保健成本的主要影响因素。果胶是一种植物衍生的杂多糖,最近已被证明具有与内脏间皮的糖萼结合的潜力。由于生物粘附是一个涉及果胶基聚合物与糖萼相互渗透的过程,我们预测果胶基聚合物也可能是胸膜损伤的有效密封剂。为了探索高甲氧基果胶和羧甲基纤维素等重量比混合物作为胸膜密封剂的潜在作用,我们比较了果胶基聚合物的屈服强度与常用的手术产品。果胶基聚合物对肺胸膜的粘附力明显大于比较产品(p<0.001)。在 25g 针诱导的肺损伤模型中,胸膜损伤导致空气泄漏和气道压力丧失。应用果胶基聚合物后,气道压力得到恢复,没有可测量的空气泄漏。尽管应用了大的果胶基聚合物片(50mm),但多频肺阻抗研究表明组织阻尼(G)或滞后性(η)没有显著增加(p>0.05)。在 7 天生存实验中,在胸膜损伤后应用果胶基聚合物与无明显毒性、100%存活率(N=5)和恢复肺功能相关。我们得出结论,这种果胶基聚合物是一种具有潜在临床应用价值的强力且无毒的生物胶粘剂,可用于治疗胸膜损伤。

相似文献

1
Functional Mechanics of a Pectin-Based Pleural Sealant after Lung Injury.
Tissue Eng Part A. 2018 May;24(9-10):695-702. doi: 10.1089/ten.tea.2017.0299. Epub 2018 Jan 5.
2
Structural heteropolysaccharides as air-tight sealants of the human pleura.
J Biomed Mater Res B Appl Biomater. 2019 Apr;107(3):799-806. doi: 10.1002/jbm.b.34175. Epub 2018 Sep 25.
3
Structural Heteropolysaccharide Adhesion to the Glycocalyx of Visceral Mesothelium.
Tissue Eng Part A. 2018 Feb;24(3-4):199-206. doi: 10.1089/ten.TEA.2017.0042. Epub 2017 Jun 30.
4
Functional Adhesion of Pectin Biopolymers to the Lung Visceral Pleura.
Polymers (Basel). 2021 Sep 2;13(17):2976. doi: 10.3390/polym13172976.
5
Improved outcomes utilizing a novel pectin-based pleural sealant following acute lung injury.
J Trauma Acute Care Surg. 2020 Nov;89(5):915-919. doi: 10.1097/TA.0000000000002754.
6
Biomechanics of a Plant-Derived Sealant for Corneal Injuries.
Transl Vis Sci Technol. 2023 May 1;12(5):20. doi: 10.1167/tvst.12.5.20.
8
Water-Dependent Blending of Pectin Films: The Mechanics of Conjoined Biopolymers.
Molecules. 2020 Apr 30;25(9):2108. doi: 10.3390/molecules25092108.
9
Development of alginate and gelatin-based pleural and tracheal sealants.
Acta Biomater. 2021 Sep 1;131:222-235. doi: 10.1016/j.actbio.2021.06.048. Epub 2021 Jul 7.
10
Bioadhesive patch as a parenchymal sparing treatment of acute traumatic pulmonary air leaks.
J Trauma Acute Care Surg. 2023 Nov 1;95(5):679-684. doi: 10.1097/TA.0000000000003956. Epub 2023 Mar 28.

引用本文的文献

1
Biomechanics of a Plant-Derived Sealant for Corneal Injuries.
Transl Vis Sci Technol. 2023 May 1;12(5):20. doi: 10.1167/tvst.12.5.20.
2
3D stimulated Raman spectral imaging of water dynamics associated with pectin-glycocalyceal entanglement.
Biomed Opt Express. 2023 Mar 7;14(4):1460-1471. doi: 10.1364/BOE.485314. eCollection 2023 Apr 1.
3
Bioadhesive patch as a parenchymal sparing treatment of acute traumatic pulmonary air leaks.
J Trauma Acute Care Surg. 2023 Nov 1;95(5):679-684. doi: 10.1097/TA.0000000000003956. Epub 2023 Mar 28.
4
Active Loading of Pectin Hydrogels for Targeted Drug Delivery.
Polymers (Basel). 2022 Dec 26;15(1):92. doi: 10.3390/polym15010092.
5
Kinetics of Pectin Biopolymer Facial Erosion Characterized by Fluorescent Tracer Microfluidics.
Polymers (Basel). 2022 Sep 19;14(18):3911. doi: 10.3390/polym14183911.
6
Optical and Mechanical Properties of Self-Repairing Pectin Biopolymers.
Polymers (Basel). 2022 Mar 26;14(7):1345. doi: 10.3390/polym14071345.
9
Functional Adhesion of Pectin Biopolymers to the Lung Visceral Pleura.
Polymers (Basel). 2021 Sep 2;13(17):2976. doi: 10.3390/polym13172976.
10
Development of alginate and gelatin-based pleural and tracheal sealants.
Acta Biomater. 2021 Sep 1;131:222-235. doi: 10.1016/j.actbio.2021.06.048. Epub 2021 Jul 7.

本文引用的文献

1
Occurrence of cellobiose residues directly linked to galacturonic acid in pectic polysaccharides.
Carbohydr Polym. 2012 Jan 4;87(1):620-626. doi: 10.1016/j.carbpol.2011.08.027. Epub 2011 Aug 19.
2
Structural Heteropolysaccharide Adhesion to the Glycocalyx of Visceral Mesothelium.
Tissue Eng Part A. 2018 Feb;24(3-4):199-206. doi: 10.1089/ten.TEA.2017.0042. Epub 2017 Jun 30.
3
Efficacy and safety of Innoseal for air leak after pulmonary resection: a case-control study.
J Surg Res. 2016 Nov;206(1):22-26. doi: 10.1016/j.jss.2016.06.066. Epub 2016 Jul 1.
4
Sealing Effect of Cross-Linked Gelatin Glue in the Rat Lung Air Leak Model.
Ann Thorac Surg. 2016 Jul;102(1):282-6. doi: 10.1016/j.athoracsur.2016.02.038. Epub 2016 May 19.
5
Air leak after lung resection: pathophysiology and patients' implications.
J Thorac Dis. 2016 Feb;8(Suppl 1):S46-54. doi: 10.3978/j.issn.2072-1439.2015.11.08.
6
Polysaccharide Based Formulations for Mucosal Drug Delivery: A Review.
Curr Pharm Des. 2015;21(33):4798-821. doi: 10.2174/1381612821666150820100653.
7
Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.
Anat Rec (Hoboken). 2015 Nov;298(11):1960-8. doi: 10.1002/ar.23259. Epub 2015 Sep 8.
8
Pleural mesothelium lubrication after phospholipase treatment.
Respir Physiol Neurobiol. 2014 Apr 1;194:49-53. doi: 10.1016/j.resp.2014.01.016. Epub 2014 Jan 28.
9
Reduction of intraoperative air leaks with Progel in pulmonary resection: a comprehensive review.
J Cardiothorac Surg. 2013 Apr 16;8:90. doi: 10.1186/1749-8090-8-90.
10
Design strategies and applications of tissue bioadhesives.
Macromol Biosci. 2013 Mar;13(3):271-88. doi: 10.1002/mabi.201200332. Epub 2012 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验