Bin Zhengyang, Liu Ziyang, Duan Lian
Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China.
J Phys Chem Lett. 2017 Oct 5;8(19):4769-4773. doi: 10.1021/acs.jpclett.7b02125. Epub 2017 Sep 19.
One of the key issues for organic light-emitting diodes (OLEDs) is to achieve high electroluminescence efficiency and high power efficiency, which requires extremely efficient electron injection and thus low driving voltage. Here, we design a series of precursors for reactive organic radicals according to theoretical calculations and achieve efficient electron injection by using a highly reducing radical on the surface of the electron injection layer to reduce the electron injection barrier through an interface charge-transfer process. In contrast to bulk charge transfer in electron-transporting material, interface charge transfer allows us to make efficient electron injection at contact without introducing any structural and electronic disorder to electron-transporting material. 2-(2,4,6-Trimethoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium (R3), with the strongest electron-donating ability, could largely reduce the electron injection barrier and outperform the previously reported organic radical (2-(2-methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium, o-MeO-DMBI or R1) and the widely used electron injection material (LiF) to boost device performance.
有机发光二极管(OLED)的关键问题之一是实现高电致发光效率和高功率效率,这需要极其高效的电子注入,从而降低驱动电压。在此,我们根据理论计算设计了一系列用于反应性有机自由基的前体,并通过在电子注入层表面使用强还原性自由基,通过界面电荷转移过程降低电子注入势垒,实现了高效电子注入。与电子传输材料中的体电荷转移不同,界面电荷转移使我们能够在接触时进行高效电子注入,而不会给电子传输材料引入任何结构和电子无序。具有最强供电子能力的2-(2,4,6-三甲氧基苯基)-1,3-二甲基-1H-苯并咪唑-3-鎓(R3)能够大幅降低电子注入势垒,其性能优于先前报道的有机自由基(2-(2-甲氧基苯基)-1,3-二甲基-1H-苯并咪唑-3-鎓,邻甲氧基-DMBI或R1)以及广泛使用的电子注入材料(LiF),从而提升了器件性能。