文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于在线判别和低秩字典学习的鲁棒视觉跟踪

Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.

出版信息

IEEE Trans Cybern. 2018 Sep;48(9):2643-2655. doi: 10.1109/TCYB.2017.2747998. Epub 2017 Sep 12.


DOI:10.1109/TCYB.2017.2747998
PMID:28920914
Abstract

In this paper, we propose a novel and robust tracking framework based on online discriminative and low-rank dictionary learning. The primary aim of this paper is to obtain compact and low-rank dictionaries that can provide good discriminative representations of both target and background. We accomplish this by exploiting the recovery ability of low-rank matrices. That is if we assume that the data from the same class are linearly correlated, then the corresponding basis vectors learned from the training set of each class shall render the dictionary to become approximately low-rank. The proposed dictionary learning technique incorporates a reconstruction error that improves the reliability of classification. Also, a multiconstraint objective function is designed to enable active learning of a discriminative and robust dictionary. Further, an optimal solution is obtained by iteratively computing the dictionary, coefficients, and by simultaneously learning the classifier parameters. Finally, a simple yet effective likelihood function is implemented to estimate the optimal state of the target during tracking. Moreover, to make the dictionary adaptive to the variations of the target and background during tracking, an online update criterion is employed while learning the new dictionary. Experimental results on a publicly available benchmark dataset have demonstrated that the proposed tracking algorithm performs better than other state-of-the-art trackers.

摘要

在本文中,我们提出了一种新颖而鲁棒的跟踪框架,基于在线判别和低秩字典学习。本文的主要目的是获得紧凑且低秩的字典,这些字典可以为目标和背景提供良好的判别表示。我们通过利用低秩矩阵的恢复能力来实现这一点。也就是说,如果我们假设同一类别的数据是线性相关的,那么从每个类别训练集中学到的相应基向量将使字典变得近似低秩。所提出的字典学习技术结合了重构误差,提高了分类的可靠性。此外,设计了一个多约束目标函数,以实现判别和鲁棒字典的主动学习。进一步,通过迭代计算字典、系数,并同时学习分类器参数,获得最优解。最后,实现了一个简单而有效的似然函数来估计跟踪过程中目标的最优状态。此外,为了使字典在跟踪过程中适应目标和背景的变化,在学习新字典时采用了在线更新准则。在一个公开的基准数据集上的实验结果表明,所提出的跟踪算法优于其他最先进的跟踪器。

相似文献

[1]
Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.

IEEE Trans Cybern. 2017-9-12

[2]
Learning local appearances with sparse representation for robust and fast visual tracking.

IEEE Trans Cybern. 2014-7-10

[3]
Discriminative object tracking via sparse representation and online dictionary learning.

IEEE Trans Cybern. 2013-5-31

[4]
Tensor Dictionary Learning for Positive Definite Matrices.

IEEE Trans Image Process. 2015-6-3

[5]
Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.

PLoS One. 2015-11-16

[6]
Discriminative Fisher Embedding Dictionary Learning Algorithm for Object Recognition.

IEEE Trans Neural Netw Learn Syst. 2020-3

[7]
Low-rank analysis-synthesis dictionary learning with adaptively ordinal locality.

Neural Netw. 2019-8-2

[8]
Discriminative Dictionary Learning With Two-Level Low Rank and Group Sparse Decomposition for Image Classification.

IEEE Trans Cybern. 2016-6-30

[9]
Online multi-modal robust non-negative dictionary learning for visual tracking.

PLoS One. 2015-5-11

[10]
Discriminative dictionary learning algorithm with pairwise local constraints for histopathological image classification.

Med Biol Eng Comput. 2021-1

引用本文的文献

[1]
Adversarial learning for mono- or multi-modal registration.

Med Image Anal. 2019-8-24

[2]
XQ-SR: Joint x-q space super-resolution with application to infant diffusion MRI.

Med Image Anal. 2019-10

[3]
Subspace structural constraint-based discriminative feature learning via nonnegative low rank representation.

PLoS One. 2019-5-7

[4]
Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data.

IEEE Trans Med Imaging. 2019-4-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索