文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于不完全多模态神经影像学和遗传数据的阿尔茨海默病诊断的潜在表示学习。

Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data.

出版信息

IEEE Trans Med Imaging. 2019 Oct;38(10):2411-2422. doi: 10.1109/TMI.2019.2913158. Epub 2019 Apr 25.


DOI:10.1109/TMI.2019.2913158
PMID:31021792
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8034601/
Abstract

The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method.

摘要

多模态数据(例如磁共振成像(MRI)、正电子发射断层扫描(PET)和遗传数据)中包含的互补信息的融合促进了自动化阿尔茨海默病(AD)诊断的进展。然而,基于多模态的 AD 诊断模型通常受到缺失数据的阻碍,即并非所有受试者都具有完整的多模态数据。许多先前研究使用的一个简单解决方案是丢弃具有缺失模态的样本。然而,这会显著减少训练样本的数量,从而导致分类模型效果不佳。此外,在构建分类模型时,大多数现有方法只是将来自不同模态的特征简单地串联成单个特征向量,而不考虑它们的潜在关联。由于来自不同模态的特征通常密切相关(例如,MRI 和 PET 特征是从同一大脑区域提取的),利用它们的模态间关联可以提高诊断模型的稳健性。为此,我们提出了一种新颖的基于潜在表示学习的多模态 AD 诊断方法。具体来说,我们使用所有可用的样本(包括具有不完整模态数据的样本)来学习潜在表示空间。在这个空间中,我们不仅使用具有完整多模态数据的样本学习共同的潜在表示,还使用具有不完整多模态数据的样本学习独立的模态特定的潜在表示。然后,我们将潜在表示投影到标签空间以进行 AD 诊断。我们使用来自阿尔茨海默病神经影像学倡议(ADNI)数据库的 737 名受试者进行实验,实验结果验证了我们提出的方法的有效性。

相似文献

[1]
Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data.

IEEE Trans Med Imaging. 2019-4-25

[2]
Multi-modal latent space inducing ensemble SVM classifier for early dementia diagnosis with neuroimaging data.

Med Image Anal. 2020-2

[3]
Label-aligned multi-task feature learning for multimodal classification of Alzheimer's disease and mild cognitive impairment.

Brain Imaging Behav. 2016-12

[4]
Latent feature representation learning for Alzheimer's disease classification.

Comput Biol Med. 2022-11

[5]
Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease.

Med Image Anal. 2020-2

[6]
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

Neuroinformatics. 2018-10

[7]
Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment.

Comput Methods Programs Biomed. 2015-8-10

[8]
Hypergraph based multi-task feature selection for multimodal classification of Alzheimer's disease.

Comput Med Imaging Graph. 2020-3

[9]
A Multi-Classification Accessment Framework for Reproducible Evaluation of Multimodal Learning in Alzheimer's Disease.

IEEE/ACM Trans Comput Biol Bioinform. 2024

[10]
Structured Sparse Kernel Learning for Imaging Genetics Based Alzheimer's Disease Diagnosis.

Med Image Comput Comput Assist Interv. 2016-10

引用本文的文献

[1]
An FDG-PET-Based Machine Learning Framework to Support Neurologic Decision-Making in Alzheimer Disease and Related Disorders.

Neurology. 2025-7-22

[2]
Alzheimer's disease recognition via long-range state space model using multi-modal brain images.

Front Neurosci. 2025-5-19

[3]
CSEPC: a deep learning framework for classifying small-sample multimodal medical image data in Alzheimer's disease.

BMC Geriatr. 2025-2-26

[4]
Domain adaptation in small-scale and heterogeneous biological datasets.

Sci Adv. 2024-12-20

[5]
Longitudinal Alzheimer's Disease Progression Prediction With Modality Uncertainty and Optimization of Information Flow.

IEEE J Biomed Health Inform. 2025-1

[6]
[An MRI multi-sequence feature imputation and fusion mutual-aid model based on sequence deletion for differentiation of high-grade from low-grade glioma].

Nan Fang Yi Ke Da Xue Xue Bao. 2024-8-20

[7]
Early Prediction of Progression to Alzheimer's Disease using Multi-Modality Neuroimages by a Novel Ordinal Learning Model ADPacer.

IISE Trans Healthc Syst Eng. 2024

[8]
BIGFormer: A Graph Transformer With Local Structure Awareness for Diagnosis and Pathogenesis Identification of Alzheimer's Disease Using Imaging Genetic Data.

IEEE J Biomed Health Inform. 2025-1

[9]
Latent relation shared learning for endometrial cancer diagnosis with incomplete multi-modality medical images.

iScience. 2024-7-15

[10]
AN INTERPRETABLE GENERATIVE MULTIMODAL NEUROIMAGING-GENOMICS FRAMEWORK FOR DECODING ALZHEIMER'S DISEASE.

ArXiv. 2025-2-4

本文引用的文献

[1]
Joint Robust Imputation and Classification for Early Dementia Detection Using Incomplete Multi-modality Data.

Predict Intell Med. 2018

[2]
BIRNet: Brain image registration using dual-supervised fully convolutional networks.

Med Image Anal. 2019-5

[3]
Multi-modal Neuroimaging Data Fusion via Latent Space Learning for Alzheimer's Disease Diagnosis.

Predict Intell Med. 2018-9

[4]
Adversarial Similarity Network for Evaluating Image Alignment in Deep Learning based Registration.

Med Image Comput Comput Assist Interv. 2018-9

[5]
Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis.

Hum Brain Mapp. 2018-11-1

[6]
Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.

IEEE Trans Cybern. 2018-6-14

[7]
Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model.

IEEE Trans Biomed Eng. 2018-4-9

[8]
Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images.

Med Image Anal. 2018-2-27

[9]
Conversion and time-to-conversion predictions of mild cognitive impairment using low-rank affinity pursuit denoising and matrix completion.

Med Image Anal. 2018-1-31

[10]
Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.

IEEE Trans Cybern. 2017-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索