Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Biotechnol Bioeng. 2018 Jan;115(1):206-215. doi: 10.1002/bit.26455. Epub 2017 Nov 3.
Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy.
甲醛是一种普遍存在的环境毒素,也是单碳代谢的关键中间产物。因此,监测甲醛浓度对于环境监测和天然及合成甲醇营养菌的代谢工程都很有意义,但目前的方法存在灵敏度低、工作流程复杂或需要昂贵的分析设备等问题。在这里,我们基于大肠杆菌的 FrmR 阻遏蛋白和同源启动子开发了一种甲醛生物传感器。对天然阻遏蛋白结合位点和调控结构的优化使检测水平低至 1µM。然后,我们使用该传感器对几种 NAD 依赖型甲醇脱氢酶 (Mdh) 变体的体内活性进行了基准测试,Mdh 是催化甲醇同化第一步的限速酶。为了使用该生物传感器来区分混合 Mdh 变体群体中的个体,我们开发了一种策略,通过使用谷胱甘肽作为甲醛汇来防止串扰,从而最小化细胞间甲醛扩散。最后,我们将该生物传感器应用于工程大肠杆菌菌株中 mdh 和甲醛同化酶 hps 和 phi 的表达平衡,以最小化甲醛积累,同时减轻异源表达的负担。该生物传感器提供了一种快速简单的方法来灵敏地检测甲醛,并有可能成为 Mdh 的定向进化和建立合成甲醇营养的动态甲醛控制策略的基础。