Suppr超能文献

甲醛生物传感器的研制及其在合成甲醇营养型中的应用。

Development of a formaldehyde biosensor with application to synthetic methylotrophy.

机构信息

Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Biotechnol Bioeng. 2018 Jan;115(1):206-215. doi: 10.1002/bit.26455. Epub 2017 Nov 3.

Abstract

Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy.

摘要

甲醛是一种普遍存在的环境毒素,也是单碳代谢的关键中间产物。因此,监测甲醛浓度对于环境监测和天然及合成甲醇营养菌的代谢工程都很有意义,但目前的方法存在灵敏度低、工作流程复杂或需要昂贵的分析设备等问题。在这里,我们基于大肠杆菌的 FrmR 阻遏蛋白和同源启动子开发了一种甲醛生物传感器。对天然阻遏蛋白结合位点和调控结构的优化使检测水平低至 1µM。然后,我们使用该传感器对几种 NAD 依赖型甲醇脱氢酶 (Mdh) 变体的体内活性进行了基准测试,Mdh 是催化甲醇同化第一步的限速酶。为了使用该生物传感器来区分混合 Mdh 变体群体中的个体,我们开发了一种策略,通过使用谷胱甘肽作为甲醛汇来防止串扰,从而最小化细胞间甲醛扩散。最后,我们将该生物传感器应用于工程大肠杆菌菌株中 mdh 和甲醛同化酶 hps 和 phi 的表达平衡,以最小化甲醛积累,同时减轻异源表达的负担。该生物传感器提供了一种快速简单的方法来灵敏地检测甲醛,并有可能成为 Mdh 的定向进化和建立合成甲醇营养的动态甲醛控制策略的基础。

相似文献

1
Development of a formaldehyde biosensor with application to synthetic methylotrophy.
Biotechnol Bioeng. 2018 Jan;115(1):206-215. doi: 10.1002/bit.26455. Epub 2017 Nov 3.
3
Engineering Escherichia coli for methanol conversion.
Metab Eng. 2015 Mar;28:190-201. doi: 10.1016/j.ymben.2014.12.008. Epub 2015 Jan 14.
5
Biosensor-Based Directed Evolution of Methanol Dehydrogenase from .
Int J Mol Sci. 2021 Feb 2;22(3):1471. doi: 10.3390/ijms22031471.
6
Methanol production by reversed methylotrophy constructed in .
Biosci Biotechnol Biochem. 2020 May;84(5):1062-1068. doi: 10.1080/09168451.2020.1715202. Epub 2020 Jan 16.
7
Phage-Assisted Evolution of Bacillus methanolicus Methanol Dehydrogenase 2.
ACS Synth Biol. 2019 Apr 19;8(4):796-806. doi: 10.1021/acssynbio.8b00481. Epub 2019 Mar 20.
9
Mixing and matching methylotrophic enzymes to design a novel methanol utilization pathway in E. coli.
Metab Eng. 2020 Sep;61:315-325. doi: 10.1016/j.ymben.2020.07.005. Epub 2020 Jul 18.
10
C1 Compound Biosensors: Design, Functional Study, and Applications.
Int J Mol Sci. 2019 May 7;20(9):2253. doi: 10.3390/ijms20092253.

引用本文的文献

2
Development of a Transcriptional Biosensor for Hydrogen Sulfide That Functions under Aerobic and Anaerobic Conditions.
ACS Synth Biol. 2025 Jun 20;14(6):2198-2207. doi: 10.1021/acssynbio.5c00124. Epub 2025 May 13.
3
Seven critical challenges in synthetic one-carbon assimilation and their potential solutions.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf011.
5
Evolutionary engineering of : Crafting a synthetic methylotroph via self-reprogramming.
Sci Adv. 2024 Dec 20;10(51):eadq3484. doi: 10.1126/sciadv.adq3484.
7
Living Porous Ceramics for Bacteria-Regulated Gas Sensing and Carbon Capture.
Adv Mater. 2025 Feb;37(5):e2412555. doi: 10.1002/adma.202412555. Epub 2024 Dec 10.
8
Biosensor-Guided Engineering of a Baeyer-Villiger Monooxygenase for Aliphatic Ester Production.
Chembiochem. 2025 Jan 2;26(1):e202400712. doi: 10.1002/cbic.202400712. Epub 2024 Nov 6.
10
Economical production of Pichia pastoris single cell protein from methanol at industrial pilot scale.
Microb Cell Fact. 2023 Sep 28;22(1):198. doi: 10.1186/s12934-023-02198-9.

本文引用的文献

1
Sort-Seq Approach to Engineering a Formaldehyde-Inducible Promoter for Dynamically Regulated Escherichia coli Growth on Methanol.
ACS Synth Biol. 2017 Aug 18;6(8):1584-1595. doi: 10.1021/acssynbio.7b00114. Epub 2017 May 9.
2
Development of a Transcription Factor-Based Lactam Biosensor.
ACS Synth Biol. 2017 Mar 17;6(3):439-445. doi: 10.1021/acssynbio.6b00136. Epub 2017 Jan 4.
3
The mechanism of a formaldehyde-sensing transcriptional regulator.
Sci Rep. 2016 Dec 9;6:38879. doi: 10.1038/srep38879.
4
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
Metab Eng. 2017 Jan;39:49-59. doi: 10.1016/j.ymben.2016.10.015. Epub 2016 Nov 1.
5
The Effectors and Sensory Sites of Formaldehyde-responsive Regulator FrmR and Metal-sensing Variant.
J Biol Chem. 2016 Sep 9;291(37):19502-16. doi: 10.1074/jbc.M116.745174. Epub 2016 Jul 29.
6
Engineering an NADPH/NADP Redox Biosensor in Yeast.
ACS Synth Biol. 2016 Dec 16;5(12):1546-1556. doi: 10.1021/acssynbio.6b00135. Epub 2016 Jul 25.
7
Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1.
Appl Microbiol Biotechnol. 2016 Jun;100(11):4969-83. doi: 10.1007/s00253-016-7320-3. Epub 2016 Feb 5.
8
Development of biosensors and their application in metabolic engineering.
Curr Opin Chem Biol. 2015 Oct;28:1-8. doi: 10.1016/j.cbpa.2015.05.013. Epub 2015 Jun 5.
9
Methods for the directed evolution of proteins.
Nat Rev Genet. 2015 Jul;16(7):379-94. doi: 10.1038/nrg3927. Epub 2015 Jun 9.
10
Dynamic metabolic engineering: New strategies for developing responsive cell factories.
Biotechnol J. 2015 Sep;10(9):1360-9. doi: 10.1002/biot.201400422. Epub 2015 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验