Suppr超能文献

工程大肠杆菌进行甲醇转化。

Engineering Escherichia coli for methanol conversion.

机构信息

Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.

Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France.

出版信息

Metab Eng. 2015 Mar;28:190-201. doi: 10.1016/j.ymben.2014.12.008. Epub 2015 Jan 14.

Abstract

Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer.

摘要

甲醇营养型细菌利用甲醇和其他一碳化合物作为其唯一的碳源和能源。为此,这些细菌进化出了许多专门的酶和途径。在这里,我们基于计算机模拟和通量平衡分析,采用合成生物学方法从大肠杆菌中选择和引入了一组“甲醇营养型基因”,以实现甲醇异化和同化。我们确定了最有前途的利用甲醇的方法是实施 NAD 依赖型甲醇脱氢酶和通过表达己糖-6-磷酸合酶(Hps)和 6-磷酸-3-己酮糖异构酶(Phi)建立核酮糖单磷酸循环。为了测试在异源宿主中表现最佳的酶,我们从不同供体生物中选择了许多酶候选物,并系统地分析了它们在大肠杆菌中的体外和体内活性。在这些酶中,来源于巴氏甲烷八叠球菌的 Mdh2、Hps 和 Phi 被发现是最有效的。用产生这些酶的大肠杆菌进行的(13)C 甲醇标记实验表明,甲醇最多有 40%被掺入到中心代谢物中。大肠杆菌内源性谷胱甘肽依赖型甲醛氧化途径的存在并不影响甲醇转化率。总的来说,这项研究的结果代表了通过基因转移建立合成甲醇营养型生物的重大进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验