Suppr超能文献

基于黎曼-刘维尔分数阶积分的 ECG 去噪经验模态分解。

Riemann Liouvelle Fractional Integral Based Empirical Mode Decomposition for ECG Denoising.

出版信息

IEEE J Biomed Health Inform. 2018 Jul;22(4):1133-1139. doi: 10.1109/JBHI.2017.2753321. Epub 2017 Sep 18.

Abstract

Electrocardiograph (ECG) denoising is the most important step in diagnosis of heart-related diseases, as the diagnosis gets influenced with noises. In this paper, a new method for ECG denoising is proposed, which incorporates empirical mode decomposition algorithm with Riegmann Liouvelle (RL) fractional integral filtering and Savitzky-Golay (SG) filtering. In the proposed method, noisy ECG signal is decomposed into its intrinsic mode functions (IMFs), from which noisy IMFs, corrupted with high-frequency (HF) and low-frequency (LF) noises, are identified by proposed noisy-IMFs identification methodologies. To denoise the signal, RL fractional integral filtering and SG filtering are applied on noisy IMFs corrupted with HF and LF noises, respectively; ECG signal is reconstructed with denoised IMFs and remaining signal dominant IMFs to obtain noise-free ECG signal. Proposed methodology is tested with MIT-BIH arrhythmia database. Its performance, in terms of signal-to-noise ratio and mean square error, is compared with other related ECG denoising methods based on fractional integral, empirical mode decomposition, and ensemble empirical mode decomposition. The obtained results by proposed method prove that the proposed method gives efficient noise removal performance.

摘要

心电图(ECG)去噪是诊断心脏相关疾病的最重要步骤,因为诊断会受到噪声的影响。在本文中,提出了一种新的 ECG 去噪方法,该方法将经验模态分解算法与 Riegmann Liouvelle(RL)分数阶积分滤波和 Savitzky-Golay(SG)滤波相结合。在提出的方法中,将噪声 ECG 信号分解为其固有模态函数(IMF),通过提出的噪声 IMF 识别方法,从这些 IMF 中识别出受高频(HF)和低频(LF)噪声污染的噪声 IMF。为了对信号进行去噪,RL 分数阶积分滤波和 SG 滤波分别应用于受 HF 和 LF 噪声污染的噪声 IMF;用去噪的 IMF 和剩余信号主导 IMF 重构 ECG 信号,以获得无噪声的 ECG 信号。使用 MIT-BIH 心律失常数据库对所提出的方法进行了测试。根据信噪比和均方误差,将其性能与基于分数阶积分、经验模态分解和集合经验模态分解的其他相关 ECG 去噪方法进行了比较。所提出方法的结果证明了该方法具有高效的噪声去除性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验