Suppr超能文献

一种用于医疗设备中 ECG 信号分类的创新机器学习方法。

An Innovative Machine Learning Approach for Classifying ECG Signals in Healthcare Devices.

机构信息

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.

Mahaveer Institute of Science and Technology, Hyderabad, India.

出版信息

J Healthc Eng. 2022 Apr 13;2022:7194419. doi: 10.1155/2022/7194419. eCollection 2022.

Abstract

An ECG is a diagnostic technique that examines and records the heart's electrical impulses. It is easy to categorise and prevent computational abstractions in the ECG signal using the conventional method for obtaining ECG features. It is a significant issue, but it is also a difficult and time-consuming chore for cardiologists and medical professionals. The proposed classifier eliminates all of the following limitations. Machine learning in healthcare equipment reduces moral transgressions. This study's primary purpose is to calculate the R-R interval and analyze the blockage utilising simple algorithms and approaches that give high accuracy. The MIT-BIH dataset may be used to rebuild the data. The acquired data may include both normal and abnormal ECGs. A Gabor filter is employed to generate a noiseless signal, and DCT-DOST is used to calculate the signal's amplitude. The amplitude is computed to detect any cardiac anomalies. A genetic algorithm derives the main highlights from the peak and cycle segment length underlying the ECG signal. So, combining data with specific qualities maximises identification. The genetic algorithm aids in hereditary computations, which aids in multitarget improvement. Finally, Radial Basis Function Neural Network (RBFNN) is presented as an example. An efficient feedforward neural network lowers the number of local minima in the signal. It shows progress in identifying both normal and abnormal ECG signals.

摘要

心电图是一种检查和记录心脏电脉冲的诊断技术。使用传统的获取心电图特征的方法,可以很容易地对心电图信号进行分类和预防计算抽象。这是一个重大问题,但对于心脏病专家和医疗专业人员来说,这也是一项艰巨而耗时的任务。所提出的分类器消除了所有以下限制。医疗设备中的机器学习减少了道德违规行为。本研究的主要目的是利用简单的算法和方法计算 R-R 间隔并分析阻塞,从而获得高精度。可以使用 MIT-BIH 数据集重建数据。获取的数据可能包括正常和异常的心电图。使用 Gabor 滤波器生成无噪信号,并使用 DCT-DOST 计算信号的幅度。幅度用于检测任何心脏异常。遗传算法从 ECG 信号下的峰值和周期段长度中提取主要特征。因此,结合具有特定质量的数据可以最大程度地提高识别能力。遗传算法有助于遗传计算,从而有助于多目标改进。最后,提出了径向基函数神经网络(RBFNN)作为示例。有效的前馈神经网络降低了信号中的局部最小值数量。它在识别正常和异常心电图信号方面都取得了进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0093/9020932/7a8827eb05e4/JHE2022-7194419.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验